
1

Practical Hardware Debugging: Quick Notes On
How to Simulate Altera’s Nios II Multiprocessor Systems

Using Mentor Graphics’ ModelSim

Ray Duran
Staff Design Specialist FAE, Altera Corporation

408-544-7937
rduran@altera.com

1. Abstract

As memory and logic in today’s FPGAs has
increased, multiprocessor soft cores have become a
reality. Open source software tools and hardware
script engines allow engineers to quickly develop
software and hardware. However, debugging a
multiprocessor system can be problematic. While a
debugger can give very useful information about the
state of a CPU in a multiprocessor environment,
useful hardware information is also important.
Although many tools are available to assist, most
are not free. This session provides some useful PLI
routines that engineers can use in conjunction with
Mentor Graphics ModelSim® software and the
Altera® Nios® II soft processor to help debug shared
resources using MUTEX functions when simulating
soft-core multiprocessor systems.

2. Altera Support Tools Summary

2.1. Nios II Embedded Processor

Altera’s Nios II soft-core embedded processor is
scalable for economy, small, and fast sizes. The
economy size only takes about 700 logic elements
(LEs) and uses only two M4K blocks, while the fast
edition uses up to 1,800 LEs and three M4Ks plus
cache while operating up to 51 DMIPS at a clock
frequency of 50 MHz.

The Nios II processor is a general-purpose RISC
processor providing:

• Full 32-bit instruction set, data path, and

address space
• 32 general-purpose registers
• 32 external interrupt sources

• Dedicated instructions for computing 64-bit and
128-bit products of multiplication

• Floating-point instructions for single-precision
floating-point operations

• A JTAG debug module
• Integration to a GNU C/C++ tool chain and the

Eclipse Integrated Development Environment
(IDE)

• An industry-standard architecture (ISA) used by
all Nios II processors

• Performance up to 250 DMIPS

A Nios II processor can be built with different
specifications. Software and hardware breakpoints
as well as data, instruction, and off-chip traces with
extra hardware are available. Other features include:
bundling caches, tightly coupled memories, and
custom instructions.

2.2. SOPC Builder

Altera’s SOPC Builder tool helps designers rapidly
develop an embedded system using a simple
graphical user interface (GUI) to:

• Integrate intellectual property (IP) from Altera or

Altera Megafunction Partners Program
(AMPPSM) partners using the Avalon® interface,
which supports logic reuse.

• Generate hardware description language (HDL)
through the use of a system interconnect fabric.

• Provide a simple way of making edits and
changes to a system.

The Avalon interface provides many components
that are pre-built with associated drivers, including
DDR memory, PCI, UARTs, serial peripheral
interface (SPI), and Ethernet chips.

saadams
Text Box
CP-01031-1.0
March 2007

2

The system interconnect fabric uses minimal FPGA
logic resources to support data path multiplexing,
address decoding, wait-state generation, peripheral
address alignment (including support for native or
dynamic-bus sizing alignments), and interrupt priority
assignments.

After building the SOPC system, an SOPC Builder
system file (.ptf) that represents the hardware of the
embedded system is created. The software
environment uses this file as a hardware platform.

2.3. Integrated Development

Environment (IDE)

The Nios II IDE is the primary software development
tool for the Nios II family of embedded processors.
The IDE provides project management support and
compilation and flash programming, as well as a
debugger with the following basic features:
• Run control
• Software breakpoints
• Disassembly viewing

In addition to targeting a logic simulator such as
ModelSim software, the IDE Debugger can also

connect to real hardware via JTAG and supports an
ISA Nios II implementation.

3. Intent of Usage

This demo provides the user with a template (demo)
and notes on how to simulate a Nios II
multiprocessor system using Altera’s Nios II IDE and
SOPC Builder, and Mentor Graphics ModelSim
simulation tool. This paper provides guidelines and
information on how to simulate Avalon peripherals
interacting with two or more processors.

The PLI routines attached show that useful
simulation material can be recovered from the
design. The design could have also been coded in
HDL, C++ or other verification languages.

4. Test Scenario

A simple test scenario was chosen to illustrate that a
simulation could run with two Nios II processors
using ModelSim software. The entire system is
shown in Figure 1.

Figure 1

3

To simplify the demo and make debugging easier,
each processor was given its own memory. To
arbitrate access to the shared resource, a simple
counter is used instead of a timer, which would have
added more fetches for initialization.

4.1 Building Test Scenario

4.1.1. Build SOPC System

The SOPC system is built by selecting the
peripherals from a menu. Each peripheral is
named and can be edited for different
properties. After adding all components, the
user can then connect them and decide on
arbitration for components.

1. Rename all components. These names

will be used by software to reference the
peripherals.

2. Set a reset and exception address for
each processor. Use the default JTAG
breakpoint assigned by the system. No
interrupts are used for this demo.

3. Assign addresses to all components.
4. Accept the defaults for board and clock.

(Note: The choice of board is not
important at this time because the
system will only be simulated using
ModelSim software.)

5. Generate system. (Note: The use of
Reset vectors that point to volatile
memory is not recommended when
building real hardware, but can be used
for simulation.)

4.1.2. Build Software Project

For this demo, each processor was built in a
separate project. Each project includes a
number of switches that need to be set.

1. Set Small C library, clean exit (buffers),

reduced drivers and ModelSim software
only as switches in the properties of the
project.

2. Set Program Memory, .rodata, .rwdata,
heap and stack memory to the private
memory of the processor.

3. Specify processor to be used.
4. Set auto-generating link script to be

used.
5. Set stdout, stderr, and stdin as null for

this demo.
6. Set clocktimer, and timestamp also as

null.

7. Set RTOS to single thread.
8. Specify system PTF as hardware to use.

4.2. Operation of Test Scenario

Each processor runs its own code that tries to lock a
MUTEX and write a value to a register. The shared
resource, while only a simple register, represents a
peripheral that can be developed to be shared by
the two processors. In this example, each processor
can only access the register only after locking the
MUTEX.

4.2.1. Run ModelSim Software

After changing the directory of ModelSim to
the location of the DO script setup_sim.do,
compile:

1. Custom Verilog source code
2. Generated Verilog code form SOPC
3. PLI routine
4. Generated Testbench from SOPC
5. Referenced DAT file with image of each

processor

If waveforms are needed, they can also be
displayed from the setup window.

After simulation, the values written to the
register by each processor are displayed,
showing that two Nios II processors can
communicate to a shared hardware
resource.

5. Conclusion

The entire demo, including notes, source code and
instructions are available at:

www.mentor.com/user2user

Notes and suggestions on how to simulate custom
peripherals in an environment with multiple Nios II
processors are also available.

4

6. References

[1] AN 351 Simulating Nios II Embedded Processor

Designs

[2] Creating Multiprocessor Nios II Systems Tutorial

[3] The Verilog PLI Handbook Second Edition PLI

Handbook, Sutherland, Stuart Sutherland HDL
Inc.

[4] Nios II Software Developer’s Handbook, Section II

HAL System Library

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device
designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service
marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products
are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its
semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and
services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

	MUG_2007_paper_multi_cpu_simulation_2_rev.pdf
	copyright-page-2007.pdf

