

Microcont ro l le rs

XC164CS/CM

S p e e d c o n t r o l o f B r u s h l e s s D C m o t o r w i t h
H a l l s e n s o r u s i n g D A v E D r i v e f o r I n f i n e o n
X C 1 6 4 C M / C S m i c r o c o n t r o l l e r s

App l i ca t ion No te , V1 .0 , Ju l y 2007

AP16117

Edition 2007-07-04

Published by
Infineon Technologies AG
81726 München, Germany

© Infineon Technologies AG 2007.
All Rights Reserved.

LEGAL DISCLAIMER

THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN
IN THIS APPLICATION NOTE.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Application Note 3 V1.0, 2007-07

AP16117

Revision History: 2007-07 V1.0

Previous Version: none

Page Subjects (major changes since last revision)

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Table of Contents Page

Application Note 4 V1.0, 2007-07

1 Introduction ...5
1.1 Overview ...5
1.2 Motor Control with XC164CS/CM microcontrollers...5
1.3 DAvE Drive for Motor Control..5
1.4 Hardware and Software Components...6

2 Operation of Brushless DC Motors ...7
2.1 BLDC Basics - Hall Sensor Mode ...7
2.2 Speed Control of Brushless DC Motor..9

3 Hardware Implementation with XC164CM/CS Microcontroller...12

4 Motor Control with CAPCOM6 ...13
4.1 Sampling of Hall Pattern ...13
4.2 Hall Pattern and PWM Output Pattern Software Update ..14
4.3 Shadow Transfer of Updated Patterns..16

5 ADC for Current Measurement ..18

6 Measurement and Control Implementation ..19
6.1 Output Voltage Normalisation ...19
6.2 Current Normalisation ...19
6.3 Speed Normalisation...20
6.4 Reference Values Calculation...20

7 Software Implementation ...21
7.1 Source Files ..21
7.2 Implementation of Software ..22
7.2.1 General Description ..22
7.2.2 Usage of CAPCOM6 Functionality..23
7.2.3 Speed Calculation Function ..24
7.2.4 Implementation of PI Controller...25

8 Conclusion...27

Appendix A FLOWCHARTS..28

Appendix B Microcontroller Easy kit and Driver Board Connection ...42

Appendix C Commutation Pattern with BTS7960 Driver IC ..45

Appendix D A Quick Start to Work with DAvE Drive ...47

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Introduction

Application Note 5 V1.0, 2007-07

1 Introduction

1.1 Overview

This application notes describes the Sensored BLDC motor control using the XC164CS/CM microcontroller.
The motor control software uses the XC164CS/CM peripherals while the mathematical computations like PI
control algorithm uses the DSP Data processing (MAC Unit) functionality of the microcontroller. The
software is written in ‘C’ language with the PI-controller subroutine in assembly to make use of the MAC unit
advantages.

The basic fundamentals of the BLDC motors and how to control the speed of such motors with the
XC164CS/CM controller are explained. The advantages of the microcontroller peripherals which are
specifically designed for the motor control operations are discussed: Capture and Compare Unit for
modulation and PWM generation (CAPCOM6) and fast 10-bit Analog to Digital converter (ADC). The
software for the motor control is generated using the DAvE Drive tool and the usage of this tool for the
development of BLDC motor control with XC164CS/CM Infineon microcontrollers is explained.

1.2 Motor Control with XC164CS/CM microcontrollers

The XC164 family of microcontrollers has dedicated peripherals which are specifically designed for the motor
control applications. The key features of the microcontroller are:

• High performance 16-bit CPU with Five Stage Pipeline and MAC Unit.

• Control Oriented Instruction set with High efficiency.

• 14-channel A/D converter with programmable resolution (10-bit or 8-bit).

• Capture/Compare Unit for flexible PWM signal generation (CAPCOM6) – 3/6 Capture/Compare
channels and 1 Compare channel.

• 8-Channel Peripheral Event controller.

• 16-Priority-Level Interrupt system.

• Two Asynchronous/Synchronous serial channels (USARTs).

• Bootstrap Loader for flexible system initialization.

With the intensive autonomous use of dedicated peripherals designed for motor control, more the CPU load
can be saved. The CPU can be used for performing other key tasks of the application.

1.3 DAvE Drive for Motor Control

DAvE Drive is a tool used to configure the software for the control of Brushless DC Motor. The configuration
for a selected application can be done easily using the user friendly GUI environment.

DAvE Drive uses the technology of Digital Application virtual Engineer (DAvE), a code generator for Infineon
microcontrollers. Along with the DAvE generated code, the Motor Control Library (MCL) will be used for the
generation of a complete application source code. The motor control library contains the control algorithm
specific code.

This software can be used along with the hardware and motor supplied with the DAvE Drive kit.

The software can be modified in an Integrated Development Environment called MiniIDE, if needed.

For hex file generation, the tool chains of Keil and Tasking are supported. The generated hex file can be
downloaded into Flash memory of the microcontroller using the DAvE Drive Run time Control Panel. In
addition, you can communicate with the running microcontroller to control the operation of the motor and to
monitor the variables, optionally with graphical display.

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Introduction

Application Note 6 V1.0, 2007-07

1.4 Hardware and Software Components

For a workable system, the following hardware components are required:

• PC with Microsoft Windows XP or Windows 2000 operating system, with serial port or serial port
emulation.

• Infineon Easy Kit with Infineon XC164CS\XC164CM controller.

• Infineon 3-Phase Motor Driver Board, connected with Easy kit.

• Brushless synchronous 3-Phase Motor, e.g., BPMC low power BLDC motor.

• Power Supply for Easy kit, Driver board and 3-Phase Motor.

• Cables and connectors for Power supply, serial port and 3-Phase motor.

Additionally the following software components are needed:

• Keil (uV3) or Tasking (8.5r2) Tool chain for Infineon XC16x.

• Infineon DAvE Drive Software Package V1.0.

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Operation of Brushless DC Motors

Application Note 7 V1.0, 2007-07

2 Operation of Brushless DC Motors

2.1 BLDC Basics - Hall Sensor Mode

The Brushless DC motors are a variant of Permanent magnet DC motors. PM DC Motors are synchronous
motors in which the rotor field is driven with a constant current. By driving the rotor winding with a constant
current, a fixed magnetic flux is established within the motor. The same also can be achieved by replacing
the rotor winding with permanent magnets. By changing the stator magnets with three phase windings, the
commutation can be achieved electronically compared to the mechanical commutation in common DC
motors. Such motors are called Brushless DC motors. As this type of construction eliminates the need of
brushes, the maintenance is reduced and the reliability is increased. Figure 1 shows the stator and rotor
arrangement in Brushed and Brushless DC motor.

Figure 1 a) Brushed DC Motor, b) Brushless DC Motor

In case of Common DC motors, the brushes automatically will come into contact with the commutator of a
different coil causing the motor to continue its rotation. But in the case of BLDC motors, the commutation
has to be done through electronic switches which need the position of the rotor. The appropriate stator
windings have to be energized when the rotor pole lines up with the winding. It is possible to drive a BLDC
motor with the predefined commutation interval. But in order to achieve precise control of speed and
maximum generated torque, electronic commutation should be done with known rotor position.

Most BLDC motors have internal sensors to provide rotor position information. Hall sensors are the most
common type among them. Three phase motors typically have three Hall Sensors. Whenever the rotor
magnetic poles pass near the Hall sensors, they give a high or low signal, indicating the N or S pole is
passing near the sensor. Every Sensor outputs high level for 180 electrical degrees of electrical rotation and
low level for 180 electrical degrees of electrical rotation. For a single pole pair machine, both electrical and
mechanical degrees are same. For two pole machine, there are two electrical revolutions per mechanical
revolution. In general, the relationship between mechanical and electrical degrees is as stated below.

Electrical revolution = Mechanical revolution / Pole pairs

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Operation of Brushless DC Motors

Application Note 8 V1.0, 2007-07

Figure 2 shows a simplified representation of single polepair BLDC motor with Hall Sensors (H0, H1, H2).

The arrow represents the magnetic field of the rotor while the coils windings (A, B, C) represent the stator.

Figure 2 Single Pole pair BLDC motor with Hall Sensor

For every 60 electrical degrees of rotation, one of the Hall sensors changes its state and each combination of
Hall sensors state represents a specific rotor position. For such each rotor position, the exact sequence of
commutation can be determined.

Figure 3 Motor phase winding connection with inverter switches

Each commutation sequence has one of the windings energized to positive power (current enters into the
winding), the second winding is negative (current exits the winding) and the third is in a non-energized
condition. Torque is produced because of the interaction between the magnetic field generated by the stator
coils and the permanent magnets. Ideally, the peak torque occurs when these two fields are at 90 degrees
to each other and falls off as the fields move together. In order to keep the motor running, the magnetic field
produced by the windings should shift position as the rotor moves to catch up with the stator field. What is
known as “Six-Step commutation or Block Commutation” defines the sequence of energizing windings.

Figure 3 shows the connection of motor phase winding with the inverter switches. At any point of time only
two phases will be conducting the current. The closed circuit is formed by switching on a high side switch of
one leg and a low side switch of another leg thereby establishing a path for the flow of current.

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Operation of Brushless DC Motors

Application Note 9 V1.0, 2007-07

The Hall pattern is formed by arranging the Hall inputs in the order [H2 H1 H0].

Hall Pattern

[H2 H1 H0]

1 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 1 0

C + 0 - - 0 +

B - - 0 + + 0

A 0 + + 0 - -

HS0 Off On On Off Off Off

HS1 Off Off Off On On Off

HS2 On Off Off Off Off On

LS0 Off Off Off Off On On

LS1 On On Off Off Off Off

LS2 Off Off On On Off Off

Figure 4 Commutation Sequence for a BLDC Motor

Figure 4 shows a table formation which relates the rotor position and the commutation sequence. The “ + ”
means High-side switch (HS) on and Low-side switch (LS) off, “ - “ means LS on and HS off. The “ 0 “
means both LS and HS are off.

2.2 Speed Control of Brushless DC Motor

In automotive applications most commonly used voltage levels are 48V, 24V and 12V. The motor
manufacturer specifies the operating voltage level and speed range. The speed of the motor is directly
proportional to the applied voltage. Using Pulse Width Modulation (PWM) by switching the transistors on
and off, a varying average voltage can be applied to the motor. This average DC voltage determines the
motor speed. When both the high side and low side transistors were permanently on for the 100%
commutation period, the motor will run at rated speed provided the rated dc voltage is supplied. For
operating the motor at a desired speed below the rated speed, the commutation pattern applied at either
high side or low side should be pulse width modulated.

There are two control schemes are possible:

1. Open-loop speed Control (Voltage Control)

2. Closed-loop speed Control

In Open loop speed control, the duty cycle is calculated based on the set reference speed. In case of closed
loop speed control the actual speed is measured and compared with the reference speed to find the error
difference. This error difference will be supplied to the PI controller. The output from the PI controller gives
the desired duty cycle.

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Operation of Brushless DC Motors

Application Note 10 V1.0, 2007-07

Figure 5 Open loop Speed (Voltage) Control

Figure 5 shows the open loop speed control of BLDC motor. The duty cycle for a set reference speed is
estimated based on the nominal base speed of the motor.

Figure 6 Closed loop Speed Control

Figure 6 depicts the closed loop speed control of the BLDC motor.

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Operation of Brushless DC Motors

Application Note 11 V1.0, 2007-07

Figure 7 PI controller functional representation

A PI controller is used for regulating the speed. The error difference between the reference speed and the
actual speed is fed to the controller.

The PI controller functionality is shown in Figure 7.

In continuous time domain, the duty cycle output is given by,

Duty Cycle ∫+= dterrorKerrorK ip ***

In discrete time domain, the PI controller is implemented as described by the following equations.

e(k) * K 1)yn(k 1)y(k

e(k) * Ki yn(k) 1)yn(k

p++=+

+=+

Where,

Ki = Integral Gain

Kp = Proportional Gain

e(k) = Error value

y(k+1) = Next computed duty cycle

yn(k) = Integrated error value till last computation

yn(k+1) = Current Integrated error value

The actual Kp and Ki values are scaled and will be used in target as follows:

kp = Kp * 2
15

/ 64

ki = Ki * 2
15

Where,

kp and ki are the Scaled Proportional and Integral Gain values used in software.

To get as high accuracy, small round-off errors, as possible both input and output values are scaled to fill in
available 16 bits. The actual values of Kp and Ki which are scaled for accuracy reasons were finally scaled
down to actual values for the duty cycle calculation.

During the execution of the PI controller function, the actual values are recalculated for the duty cycle
update. The implementation details are explained in section 7.2.4

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Hardware Implementation with XC164CM/CS Microcontroller

Application Note 12 V1.0, 2007-07

3 Hardware Implementation with XC164CM/CS Microcontroller

Figure 8 depicts the hardware implementation of Hall sensored BLDC motor with the XC164CM/CS
controller and BTS 7960 power driver board. The Hall signals of the motor are fed to the CCPOS0, CCPOS1
and CCPOS2 pins of the microcontroller. This microcontroller has a Capture/Compare Unit 6 (CAPCOM6)
which generates the switching commutation pattern based on the input Hall pattern. The CCU6 also
generates the PWM which is used for the speed or torque control. The controller generates the PWM
through the CC6x andCOUT6x (x = 0,1,2) pins.

The 3-phase driver IC takes the switching patterns as input and output the signals for the 3-phase inverter.
This driver IC is also capable of implementing short-circuit current protection, over/under voltage protection
and over temperature protection by making use of the CTRAP functionality of the microcontroller. The
CTRAP will force the CCU6 outputs into a passive state and no active modulation is possible, immediately
stopping the motor operation.

Figure 8 Hall sensored BLDC motor control with XC164CS/CM and Driver board

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Motor Control with CAPCOM6

Application Note 13 V1.0, 2007-07

4 Motor Control with CAPCOM6

The functional representation of the CAPCOM6 unit is shown in Figure 9.

Figure 9 CAPCOM6 functional representation

The basic motor control can be implemented in three steps:

1. Sampling of Hall Pattern.

2. Hall Pattern and PWM output pattern software update.

3. Shadow transfer of updated patterns.

4.1 Sampling of Hall Pattern

The sampling of the Hall pattern (on CCPOSx) is done with the T12 clock. By using the dead-time counter
DTC0 (mode MSEL6x= ’1000’) a hardware noise filter can be implemented to suppress spikes on the Hall
inputs due to high di/dt in rugged inverter environment. In case of a Hall event the DTC0 is reloaded and
starts counting. When the counter value of one is reached, the CCPOSx inputs are sampled (without noise
and spikes) and are compared to the current Hall pattern (CURH) and to the expected Hall pattern (EXPH). If
the sampled pattern equals to the current pattern the edge on CCPOSx was due to a noise spike and no
action will be triggered (implicit noise filter). If the sampled pattern equals to the next expected pattern the
edge on CCPOSx was a correct Hall event, the bit CHE is set which causes an interrupt.

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Motor Control with CAPCOM6

Application Note 14 V1.0, 2007-07

Figure 10 Hall Pattern Sampling

With reference to Figure 10, the sampling of Hall pattern is illustrated as follows:

• The Sensor H1 changes it‘s level which is detected by the edge detection logic and this triggers a
Downcounter.

• When the downcounter is finished it compares the hall sensor input levels (at CCPOSx-pins) with the
value in this register MCMOUT.

• Now we have three possibilities:

o The value equals the actual value n – it was just a noise spike – nothing happens.

o The value equals to the following state n+1 – we have a correct hall event cause we would
expect this state if the motor turns right.

o If it was neither the actual nor the following state – it was a wrong hall event and we have to
react by software cause the motor does not turn properly.

4.2 Hall Pattern and PWM Output Pattern Software Update

After the actual Hall pattern is sampled at input pins CCPOSx (x = 0,1,2), the corresponding output pattern of
CCU6 should be generated in order to control BLDC motor. The CCU6 generates the switching pattern thru
its output channels CC6x and COUT6x (x = 0,1,2). It provides two independent 16-bit timers (T12, T13);
timer 13 generates the PWM which modulates DC rail voltage and hence motor speed. This PWM is
delivered by the COUT6x output channels.

On detection of correct Hall event, CHE flag is set and hardware shadow transfer is triggered. This will copy
the next state from the shadow register to the actual register. This is shown in figure 11.

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Motor Control with CAPCOM6

Application Note 15 V1.0, 2007-07

Figure 11 Correct Hall Event and Preparation for next edge detection

The hall pattern and PWM pattern are used by storing them in program as follows:

#define MCMOUTS_CTE_R(curhs,exphs,mcmps) (curhs << 11) | (exphs << 8) | (mcmps)
#define MCMOUTS_CTE_L(curhs,exphs,mcmps) (curhs << 11) | (exphs << 8) | (mcmps)

int const SP_St_Tab_r_l[16] =
{
0x0000, MCMOUTS_CTE_R(1,5,0x32), MCMOUTS_CTE_R(2,3,0x2C),

MCMOUTS_CTE_R(3,1,0x0E), MCMOUTS_CTE_R(4,6,0x0B),
MCMOUTS_CTE_R(5,4,0x38), MCMOUTS_CTE_R(6,2,0x23), 0x0000,

0x0000, MCMOUTS_CTE_L(1,3,0x23), MCMOUTS_CTE_L(2,6,0x38),
MCMOUTS_CTE_L(3,2,0x0B), MCMOUTS_CTE_L(4,5,0x0E),
MCMOUTS_CTE_L(5,1,0x2C), MCMOUTS_CTE_L(6,4,0x32), 0x0000

};
int const SP_Tab_r_l[16] =
{
0x0000, MCMOUTS_CTE_R(5,4,0x38), MCMOUTS_CTE_R(3,1,0x0E),

MCMOUTS_CTE_R(1,5,0x32), MCMOUTS_CTE_R(6,2,0x23),
MCMOUTS_CTE_R(4,6,0x0B), MCMOUTS_CTE_R(2,3,0x2C), 0x0000,

0x0000, MCMOUTS_CTE_L(3,2,0x0B), MCMOUTS_CTE_L(6,4,0x32),
MCMOUTS_CTE_L(2,6,0x38), MCMOUTS_CTE_L(5,1,0x2C),
MCMOUTS_CTE_L(1,3,0x23), MCMOUTS_CTE_L(4,5,0x0E), 0x0000

};

Here curhs refers to current hall pattern, exphs refers to expected hall pattern and mcmps refers to the
modulation pattern. The modulation pattern in table SP_St_Tab_r_l is used while starting up of the motor
and the pattern in table SP_Tab_r_l is used while the motor is running.

The usage of this table was explained in the next section.

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Motor Control with CAPCOM6

Application Note 16 V1.0, 2007-07

4.3 Shadow Transfer of Updated Patterns

Although Hall pattern and output pattern are updated via software, they don’t take effect immediately. A
mechanism named Shadow Transfer will synchronize them with pre-defined event. This is because usually
PWM outputs are used to drive high-voltage or high-current applications, and should be synchronized with
certain hardware event due to safety reason. To implement this mechanism, some special function registers
come in pairs: a shadow register and an actual one. Writing operation targets shadow registers and not
directly to the actual registers, while the read access targets the registers actually used. The register
MCMOUTS is the shadow register of MCMOUT. The values in the MCMOUTS register are transferred to the
actual register, MCMOUT, when there is a correct hall event or other events such as:

• A T12 period-match while counting up (T12pm).

• A T12 one-match while counting down (T12om).

• A T13 period-match (T13pm).

• A T12 compare-match of channel 1 (T12c1cm).

The transfer can also be requested by software by setting the corresponding shadow transfer request bit: bit
STRMCM and bit STRHP of register MCMOUTS. By using this, the update takes place completely under
software control.

Once the updated values in shadow register are transferred to the actual register, the next set of rotor
position pairs and CCU6 output pattern are loaded into the MCMOUT register. After that, the MCMOUT
controls the CCU6 output channels and these output channels decide which of the inverter switches are
activated.

The switching selection and synchronization of modulation pattern is shown in figure 12.

Figure 12 Modulation and Synchronization

During commutation initialization, the hall input pins of the microcontroller were read and the corresponding
PWM pattern was updated to the actual register through software by setting the STRHP and STRMCM flags
in the MCMOUTS register.

l_aux = (P1H & 0x0007) + g_direction;

CCU6_MCMOUTS = SP_St_Tab_r_l[l_aux] | 0x8080;

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Motor Control with CAPCOM6

Application Note 17 V1.0, 2007-07

The current hall input was used as the index of the table SP_St_Tab_r_l. The microcontroller is now ready
to deliver the PWM pattern as stored in the MCMOUT register. Now the Shadow register should be loaded
with the next CURH, EXPH and PWM pattern. Though the same table can be used for loading the shadow
register, the logic used here is always take the current hall pattern value to update the shadow register.
Hence the same start up table (SP_St_Tab_r_l) was arranged such that the current hall pattern was read
from the actual MCMOUT register and will be used as the index of the SP_Tab_r_l table.

In commutation initialization, the usage is

CCU6_MCMOUTS = SP_Tab_r_l[l_aux];

During CCU6 channel 2 compare match, the usage is

CCU6_MCMOUTS = SP_Tab_r_l[((CCU6_MCMOUT & 0x3800) >> 11) + g_direction];

The DAvE configuration for the Hall sensor mode selection, MCMOUT switching selection and
synchronization selection is shown in figure 13.

Figure 13 Multi Channel Mode Control configuration in DavE

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

ADC for Current Measurement

Application Note 18 V1.0, 2007-07

5 ADC for Current Measurement

For analog signal measurement, the analog to digital converter of XC164CS/CM microcontroller has a
programmable 8bit/10bit conversion resolution with 14-multiplexed input channels and a sample and hold
circuit. It uses the method of successive approximation.

The A/D converter of XC164 supports four different conversion modes to meet the embedded application
needs. The peripheral supports conversion modes such as fixed channel conversion, autoscan conversions
or channel injection modes. For the current measurement in Hall Mode, only single channel is used for
current measurement. Here the fixed channel single conversion with channel injection mode is selected.
Also the channel injection is triggered by the period match of timer T13 of CAPCOM6E unit.

Figure 14 shows the ADC configuration settings in DAvE.

Figure 14 ADC configuration in DAvE

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Measurement and Control Implementation

Application Note 19 V1.0, 2007-07

6 Measurement and Control Implementation

6.1 Output Voltage Normalisation

The normalization of the output voltage is calculated as follows:

Kv = Vdcmax * fpwm* 2
15

/ fcpu

e.g.: Kv = 12 * 20 * 10
3
* 2

15
/ (40 *10

6
) = 196.61V

6.2 Current Normalisation

With Driver board BTS7960 the current is measured through shunt resistance R34. This is shown in figure
15.

Figure 15 Current measurement with BTS7960 Driver board

The normalization for current is calculated as follows:

The Current sense ratio, Isr = R34 * Current Amplifier Gain = 






 +
24

23
1*34
R

R
R

 = 0.022 * (1+ 6800/330) = 0.475333

Now, the normalized current

sr

outAmp

c
I

V
K = =

475333.0

5
 = 10.518 A

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Measurement and Control Implementation

Application Note 20 V1.0, 2007-07

6.3 Speed Normalisation

The scaling factor for speed is calculated as follows:

KHall = Speed resolution * 2
15

 ; Speed resolution = Nominal Speed * fpwm/fcpu

The chosen scaling factors influences the calculation of controller parameters. Changes in resolution will
also change the controller parameters.

6.4 Reference Values Calculation

Reference values for voltage, current and speed are to be passed to the microcontroller in 1Q15 format, i.e.
bit15 is the sign bit and bit14-bit0 refers to the value. The equation for scaling is:

15' 2*
K

X
X =

X´ scaled 16bit integer
X physical value
K scaling factor (maximum physical value)
The scaling factor is the maximum physical value usable in the microcontroller without overflow.

Parameter Identification: g_nv_start_ref:

For Voltage Control (Open loop speed control):

‘V_start_reference’[V] is the starting reference value of the voltage ramp in volt (set by user)

‘V_start_reference’ Range [0 - VDCmax]
152*

__

vK

referencestartV
refstartnvg =

For Speed Control (Closed loop speed control):

‘Speed_start_reference’[V] is the starting reference value of the voltage ramp in volt (set by user)

‘Speed_start_reference’ Range [0 - KHall]
152*

__

HallK

referencestartSpeed
refstartnvg =

Parameter Identification: g_nv_end_ref:

For Voltage Control (Open loop speed control):

 ‘V_end_reference’[V] is the final reference value of the voltage ramp in volt (set by user)

‘V_end_reference’ Range [0 - VDCmax]
152*

__

vK

referenceendV
refendnvg =

For Speed Control (Closed loop speed control):

 ‘Speed_end_reference’[V] is the final reference value of the voltage ramp in volt (set by user)

‘Speed_end_reference’ Range [0 - KHall]
152*

__

HallK

referenceendSpeed
refendnvg =

Parameter Identification: Ramp_up_time:

‘Ramp_time’[V] is the final reference value of the voltage ramp in volt (set by user)

‘Ramp_time’ Range [0 – 10
6
]

62**___ cpuftimeRamptimeupRamp =

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Software Implementation

Application Note 21 V1.0, 2007-07

7 Software Implementation

7.1 Source Files

Table lists the source files that are generated by DAvE Drive for motor control. The table comprises also
some their possible contents and some remarks.

Table 1 Generated Source Files

File Possible Contents Remarks

ADC.C, ADC.H HW initialization for ADC

ADC error interrupt after injected conversion for
ADC readout and some time-critical actions

ADC related definitions

ASC0.C, ASC0.H HW initialization for ASC0

ASC0 receive interrupt

ASC0 related definitions

Files only
generated if
runtime
communication is
enabled.

CCU6.C, CCU6.H HW initialization for CCU6

CTRAP interrupt for shutdown

T12 period match interrupt for shutdown

CC62 rising edge interrupt for BEMF speed
calculation

T13 period match interrupt for some PWM
synchronous actions

CCU6 related definitions

COMM.C, COMM.H Initialization for Runtime Control Panel

ASC0 receive interrupt for Runtime Control Panel

Runtime Control Panel related definitions

Files only
generated if
runtime
communication is
enabled.

COMPILER.H Compiler related definitions

CONFIG.H Configuration related definitions

CONTROL_LIB.H Application-specific include files

CTRL.C, CTRL.H Subroutines for motor control, e.g. commutation

Motor control related definitions

DRIVE.C, DRIVE.H Startup for drive program

Drive related definitions

IO.C, IO.H Initialization for IO (input/output lines)

IO related definitions

MAIN.C, MAIN.H HW and SW initialization

Endless loop for non time-critical actions

Definitions related to MAIN

MCU.H MCU related definitions

PI_CTRL.C,
PI_PARAMETERS.H

PI Control program

PI Control related definitions

Files only
generated if PI
controller is used.

START.ASM C startup routine

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Software Implementation

Application Note 22 V1.0, 2007-07

7.2 Implementation of Software

The software is divided into several routines:

Main loop:

• Initialization (CPU, I/O ports, CAPCOM6, ADC, ASC0 (Run time control panel communication)

• Start, motor ramp generation, Stop, communication (Run time control panel communication)

Interrupt routines:

• CAPCOM6

o Timer T13

o Error Handling

o Speed measurement

• ADC

• ASC0 (Run time control panel communication)

7.2.1 General Description

All peripherals are initialised during the execution of MAIN_viInit function. The start function initializes the
motor start operation with commutation logic related timer, modulation, compare registers, software variables
etc., The motor ramp function is called continuously till the ramp value reach the set reference value. The
stop function is used to stop the motor in a normal way. This function is called whenever a manual stop
operation performed or error detected during the motor is running. The communication related initialization is
used for performing the monitor and control operation during the motor is running or in stopped condition.

The CAPCOM6 related interrupt routines are used for speed measurement, duty cycle calculation using PI
control and for error detection.

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Software Implementation

Application Note 23 V1.0, 2007-07

7.2.2 Usage of CAPCOM6 Functionality

Figure 16 Hall Sensor Mode (MSEL6x = ‘1000b’)

For Brushless-DC motors there is a special mode (MSEL6x = ’1000b’) which is triggered by a change of the
Hall-inputs (CCPOSx). This is shown in figure 16. Here T12’s channel 0 acts in capture function; channel 1
and 2 in compare function (without output modulation) and the multi-channel-block is used to trigger the
output switching together with a possible modulation of T13. After the detection of a valid Hall edge the T12
count value is captured to channel 0 (representing the actual motor speed) and resets the T12. When the
timer reaches the compare value in channel 1, the next multi-channel state is switched by triggering the
shadow transfer of bit field MCMP (if enabled in bit field SWEN). This trigger event can be combined with
several conditions which are necessary to implement a noise filtering (correct Hall event) and to synchronize
the next multi-channel state to the modulation sources (avoiding spikes on the output lines). This compare
function of channel 1 can be used as a phase delay for the position input to the output switching which is
necessary if a sensorless back-EMF technique is used instead of Hall sensors. The compare value in
channel 2 can be used as a time-out trigger (interrupt) indicating that the motors destination speed is far
below the desired value which can be caused by an abnormal load change. In this mode the modulation of
T12 has to be disabled (T12MODENx = ’0’).

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Software Implementation

Application Note 24 V1.0, 2007-07

7.2.3 Speed Calculation Function

The speed calculation needs the time between two Hall Sensor events. The time will be ascertained by
Timer12 (CAPCOM6). On every correct Hall event, the Timer T12 will be reset and the value of Timer T12
will be saved in register CCU6_CC60R.

To reduce the measurement errors from Hall Sensors the time between two Hall sensor events is averaged
over (6 * Polepairs) measured values. The sum of the measured values is divided by 2x (it is easier to

implement) (2x > (6 * Pp)). The step size 12TtΔ will determine the minimum speed and the time constant of

the filter for the Hall Sensor signals.

tn = CCU6_CC60R x

Ppnn

Hall

tt
t

2

...]1)*6([)0(' −++ ++
=

The speed is calculated by the following equation:

x

THall

Hall
tt

U
n

2**

min/60

12

' Δ
= ssstT µµµ 4.6;2.3;6.112 =Δ

12TtΔ determine the resolution for high speed and the value of minimum measurable speed. The delay of

the speed calculation DT depends upon the time HT between two Hall Sensor events. The higher the

speed, the speed will be calculated more often.

12* TnH ttT Δ= pHD PTT *6*=

The speed calculation is getting executed on CCU6 channel 2 compare match.

The values of time measurement will be saved in a circular memory. Because of the continuous integration
of the measured values, the oldest value must be subtracted to get always (6*Pp) values in the accumulator.
There are used (6*Pp) values to minimize errors from the Hall Sensors. As next there will be executed the
average calculation and speed calculation. Counter counts the Hall Sensor events. If counter has counted a
certain number of events (e.g. 100), the average value from speed will be used for speed calculation. Before
it the speed will be calculated directly from the measured values.

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Software Implementation

Application Note 25 V1.0, 2007-07

7.2.4 Implementation of PI Controller

The PI controller functionality implementation was done in assembly and used the MAC unit functionality of
the microcontroller. The MAC unit provides single-instruction-cycle, non-pipelined, 32-bit additions, 32-bit
subtraction, left and right shifts, 16-bit by 16-bit multiplication and multiplication with cumulative
subtraction/addition. The PI implementation in assembly with the MAC functionality has the high calculation
power. For a 40MHz CPU clock the duty cycle calculation will be performed in ~1 µs.

The MAC unit includes the following major components.

• The 16-bit by 16-bit Signed/Unsigned Multiplier and Scaler

• Concatenation Unit

• One-bit Scaler

• The 40-bit Adder/Subtracter

• The Data Limiter

• The Accumulator Shifter

• The 40-bit Signed Accumulator Register

• The Repeat Counter

To implement the PI-controller functionality in software, the analog differential equation has to be modified
into a time discrete differential equation. There is no prediction of the system parameters, that’s why the
discrete function has to be transformed into a recursive function. That means you calculate the actual
controller output by means of the last output and the actual input of the controller.

Refer section 2.2 for the discrete function implementation.

The PI controller parameters are given to the function over structure, which has the following form:

struct pi_controller // PI-controller parameter
{
 long yn; // PI integral buffer
 int kp; // Proportional constant
 int ki; // Integral constant
 int ymax; // Maximal ouput limit
 int ymin; // Minimal ouput limit
};
struct pi_controller C_SDATA g_pi_array;

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Software Implementation

Application Note 26 V1.0, 2007-07

The reference value and the actual value are given directly to the PI controller function. The values are
represented in 1Q15 format.

int pi_controller64(long *pi_parameter,int reference,int actual)
{

#pragma asm

 mov R12,MCW ;Save MCW register
 mov MCW,#1536 ;Set saturation and shift left
 mov R11,ZEROS ;Load zero in R11
 CoLOAD R11,R9 ;Load Accumulator (High) with R9 (reference)
 CoSUB R11,R10 ;error = reference - actual
 CoSTORE R9 ,MAS ;Load error in R9
 mov R3,[R8+] ;
 CoLOAD R3,[R8+] ;Load yn (integral buffer) in accumulator
 mov R1,R8 ;Save parameters addres in R1
 mov R5,[R1+] ;Load Kp (proportional Constant) in R5
 mov R6,[R1+] ;Load Ki = T0/Ti (integral Constant) in R6
 CoMAC R6,R9 ;yn = Ki * error + yn
 mov R6,[R1+] ;Load ymax (limit value max)
 mov R7,[R1+] ;Load ymin (limit value min)
 CoMIN R11,R6 ;Limit max yn
 CoMAX R11,R7 ;Limit min yn
 CoSTORE R4,MAH ;Store yn-high in R4
 CoSTORE R3,MAL ;Store yn-low in R3
 mov [-R8],R4 ;Store R4 in integral buffer(High)
 mov [-R8],R3 ;Store R3 in integral buffer(Low)
 CoMUL R5,R9 ;Kp * error
 CoSHL #6 ;64 * Kp * error
 CoADD R3,R4 ;y = yn + (64 * Kp * error)
 CoMIN R11,R6 ;Limit max y
 CoMAX R11,R7 ;Limit min y
 CoSTORE R4,MAS ;Store y-high in R4 (return register)
 mov MCW,R12 ;Restore MCW register

#pragma endasm

}

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers

Conclusion

Application Note 27 V1.0, 2007-07

8 Conclusion

This application note aims to provide the details of the BLDC motor working principle and explains how to
drive such motor. This software solution consumes only very limited CPU resources because of the high
performance microcontroller and its dedicated peripherals for BLDC motor control. Also with DAvE Drive the
user can quickly start to work with BLDC motor control with the hardware. The important features of the
microcontroller peripherals and how to make use of these features for the driving logic of motor also
discussed.

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix A FLOWCHARTS

Application Note 28 V1.0, 2007-07

Appendix A FLOWCHARTS

Flow chart of Main function

Figure 17 Flow chart of Main Function

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix A FLOWCHARTS

Application Note 29 V1.0, 2007-07

Flow Chart of MAIN_vInit function

Figure 18 Flowchart of MAIN_vInit function

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix A FLOWCHARTS

Application Note 30 V1.0, 2007-07

Flowchart of TRAP_RESET function

Figure 19 Flowchart of TRAP_RESET function

Flowchart of MOTOR_OPERATION_CONTROL function

Figure 20 Flowchart of MOTOR_OPERATION_CONTROL function

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix A FLOWCHARTS

Application Note 31 V1.0, 2007-07

Flowchart of Start function

Figure 21 Flowchart of Start function

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix A FLOWCHARTS

Application Note 32 V1.0, 2007-07

Flowchart of Stop function

Figure 22 Flowchart of Stop function

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix A FLOWCHARTS

Application Note 33 V1.0, 2007-07

Flowchart of init_control function

Figure 23 Flowchart of init_control function

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix A FLOWCHARTS

Application Note 34 V1.0, 2007-07

Flowchart of Commutation_init function

Figure 24 Flowchart of Commutation_init function

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix A FLOWCHARTS

Application Note 35 V1.0, 2007-07

Flowchart of speed_ramp_generation

Figure 25 Flowchart of Speed_ramp_generation function

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix A FLOWCHARTS

Application Note 36 V1.0, 2007-07

Flowchart of speed_ref_ramp function

Figure 26 Flowchart of speed_ref_ramp function

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix A FLOWCHARTS

Application Note 37 V1.0, 2007-07

Flowchart of Interrupt CCU6_viNodeI1

Figure 27 Flowchart of Interrupt CCU6_viNodeI1

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix A FLOWCHARTS

Application Note 38 V1.0, 2007-07

Flowchart of Interrupt CCU6_vi_NodeI2

Figure 28 Flowchart of Interrupt CCU6_viNodeI2

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix A FLOWCHARTS

Application Note 39 V1.0, 2007-07

Flowchart of Speed Calculation

Figure 29 Flowchart of Speed calculation

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix A FLOWCHARTS

Application Note 40 V1.0, 2007-07

Flowchart of Interrupt CCU6_viNodeI3

Figure 30 Flowchart of Interrupt CCU6_viNodeI3

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix A FLOWCHARTS

Application Note 41 V1.0, 2007-07

Flowchart of PI_controller64

Figure 31 Flowchart of PI_controller64

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix B Microcontroller Easy kit and Driver Board Connection

Application Note 42 V1.0, 2007-07

Appendix B Microcontroller Easy kit and Driver Board Connection

The picture of the XC164CM microcontroller easy kit is shown in figure 32. The BUX1 and BUX2 connectors
of the kit are marked in Red.

Figure 32 XC164CM Easy kit

The corresponding pin descriptions of BUX1 and BUX2 connectors are shown in figure 33.

Figure 33 Pin description of Connectors BUX1 and BUX2

BUX1 BUX2

BUX2 BUX1

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix B Microcontroller Easy kit and Driver Board Connection

Application Note 43 V1.0, 2007-07

The picture of the BTS7960 driver board is shown in Figure 34. The X1 and X2 connectors of the driver
board are marked in red.

Figure 34 BTS7960 3-Phase Motor Driver

The detailed pin description of connectors X1 and X2 in BTS driver board is shown in Figure 35.

Figure 35 Connector description of BTS7960 driver IC

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix B Microcontroller Easy kit and Driver Board Connection

Application Note 44 V1.0, 2007-07

The connectors BUX1 and BUX2 of the XC164CM Easy kit microcontroller should be connected to the
connectors X1 and X2 of the 3-phase BTS7960 driver board respectively.

Figure 36 Microcontroller Easy Kit connected with the Driver Power board

The connection of microcontroller easy kit with the power driver board is shown in figure 36.

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix C Commutation Pattern with BTS7960 Driver IC

Application Note 45 V1.0, 2007-07

Appendix C Commutation Pattern with BTS7960 Driver IC

The commutation pattern is not necessarily to have a one to one mapping between the controller output and
the signal fed at the Gate terminal of the transistor. It depends on so many factors like driver IC truth table,
mapping of signals to driver IC input and at the Gate input to the transistor and the type of transistor (n-
channel or p-channel) or we say passive state.

For the switching on and off the phase windings the modulation pattern from the CC6x/COUT6x (x = 0,1,2) of
CAPCOM unit is fed to the driver IC as shown in figure 37.

Figure 37 CAPCOM output and BTS7960 driver IC input connections

Figure 38 BTS7960 Driver IC truth table

The commutation table from Figure 4 should be mapped using the truth table of the BTS driver IC to arrive at
the modulation pattern generated by the CAPCOM unit of the microcontroller.

Figure 38 shows the truth table of the BTS7960 driver IC. The COUT6x (x = 0,1,2) signals are fed to the INH
pin of the driver IC and CC6x (x = 0,1,2) signals are fed to the IN pin of the driver IC. In the truth table ‘X’
represents either ‘0’ or ‘1’.

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix C Commutation Pattern with BTS7960 Driver IC

Application Note 46 V1.0, 2007-07

Figure 39 shows the mapped modulation pattern for the microcontroller.

Figure 39 Modulation pattern table at the microcontroller side

The modulation pattern varies for different types of machine types. To provide flexibility for the user in
configuring the modulation pattern, CAPCOM unit has a MCMOUTS register which stores the Current Hall
Pattern (CHP), expected Hall pattern (EHP) and modulation pattern (MCMCP). At every correct Hall Event,
a new Hall pattern with its corresponding modulation pattern will be loaded in this register. The register
description is given in figure 40.

Figure 40 Multi-Channel Mode Output Shadow Register

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix D A Quick Start to Work with DAvE Drive

Application Note 47 V1.0, 2007-07

Appendix D A Quick Start to Work with DAvE Drive

Control Technique Selection

Based on the Control technique selected in the Control Algorithm Dialogue, the necessary peripherals
settings will be enforced on DAvE for that control technique. The list of peripherals used by the DAvE Drive
for the speed control algorithm implementation are CC6, ADC, IO ports and ASC0 for download and runtime
communication.

Figure 41 Selection of Control Technique

Code Generation

With the default configuration, the user can generate code, compile and download it to the target board using
the Run time Control Panel.

Figure 42 Code Generation

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix D A Quick Start to Work with DAvE Drive

Application Note 48 V1.0, 2007-07

Compilation and Hex file generation

After Source code Generation, if the user wants to compile and generate hex file without modifying the
software or viewing it then “Build Last Generated Source” option button should be selected. MiniIDE will
open up and the compilation will start. The compilation status will be displayed in the log window.

Figure 43 Compilation and Hex file generation

Modify Source, compilation and Hex-File Generation

By selecting the Display IDE, the user will be able to view and modify the source code generated. After
modifying the code the user can compile the code and after successful compilation, hex file will be
generated.

Figure 44 Selection of MiniIDE to modify code

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix D A Quick Start to Work with DAvE Drive

Application Note 49 V1.0, 2007-07

Figure 45 Source code editing and build files for Hex file generation

Hex file download

After hex file generation, the user can download the hex file to the target and communicate with the target for
the motor control operation. The user can use the Runtime Control panel for downloading, run time control
and monitoring of application parameters.

In microcontroller board the config DIP switch should be as shown in figure 46 for downloading.

Figure 46 ASC Bootstrap loader mode for microcontroller Easy kit (Config DIP Switch)

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix D A Quick Start to Work with DAvE Drive

Application Note 50 V1.0, 2007-07

Figure 47 Hex file download with RS232 serial port

Initialize, Monitor and Control Target

On successful download of hex file to target, the user has to set the Config switch as shown in figure 48 to
start the code.

Figure 48 Standard start mode for Microcontroller Easy Kit

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix D A Quick Start to Work with DAvE Drive

Application Note 51 V1.0, 2007-07

The user has to set the ASC baud rate as 115200 and press ‘initialize’ target.

Figure 49 Initialize target

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix D A Quick Start to Work with DAvE Drive

Application Note 52 V1.0, 2007-07

After successful initialization, the user can start the motor with or without modifying the application
parameters.

Figure 50 Start/Stop, Forward/Reverse, Speed ref, P& I Gain settings

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix D A Quick Start to Work with DAvE Drive

Application Note 53 V1.0, 2007-07

The User can select the variable and sample period for viewing in graphs. The user should select the enable
sampling option to collect the new data for viewing in graph.

Figure 51 Graph variable selection and enable sampling

 AP16117
 Speed Control of BLDC motor with Hall Sensor using DAvE Drive
 for Infineon XC164CM/CS microcontrollers
Appendix D A Quick Start to Work with DAvE Drive

Application Note 54 V1.0, 2007-07

After sampling the graph will be displayed automatically.

Figure 52 Graphical display of variables

http:/ /www.inf ineon.com

Published by Infineon Technologies AG

