
XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 1

© 2008 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. PowerPC is a trademark of IBM Corp.
and is used under license. All other trademarks are the property of their respective owners.

Summary Orbital, space-based, and extra-terrestrial applications are susceptible to the effects of high
energy charged particles. Single-event upsets (SEUs) can alter the logic state of any static
memory element (latch, flip-flop, or RAM cell) including the components of an embedded hard
processor. These upsets are unavoidable but correctable for the logic around the processor in
FPGA configuration memory.

This application note describes mitigation techniques and corresponding design flow when
using a Xilinx FPGA with an embedded processor (specifically the PowerPC® 405 found in the
Virtex™-4 FX family) in high-radiation environments. This example contains a block RAM
scrubber example for block RAM blocks attached to the processor local bus (PLB) used for
code execution. Since this technique cannot triplicate the PowerPC 405 (PPC405), the
surrounding logic is mitigated as much as practically possible. Therefore, the user must
determine if the system mitigation is sufficient for the target environment.

Note: It is essential for the reader to have a basic understanding of the Xilinx tool flow using the Xilinx
Platform Studio (XPS), triple-module-redundancy (TMR) techniques, the Xilinx TMRTool, and ISE™
software. An in-depth understanding of [Ref 1] is also essential. In addition, an understanding of VHDL
design and practice is recommended.

Tools needed to complete the example design flow

The design flow described in this application note is based upon the following toolset:

• Xilinx ISE software (8.2i SP3)

http://www.xilinx.com/ise

• Xilinx XPS (8.2i SP2)

http://www.xilinx.com/edk

• Xilinx TMRTool (8.2i) - With V4 Support

http://www.xilinx.com/tmrtool

• Plan-Ahead for viewing the netlists to ensure the design is mitigated as expected. This tool
is optional, but highly recommended.

www.xilinx.com/planahead

• ModelSim for simulating the system design, if desired. Processor simulation is not covered in
this application note. Non-processor block RAM scrubber simulation is covered in [Ref 2].

• ChipScope™ analyzer (8.2i) for observing the block RAM scrubbing engine on the PLB
bus. Use of this tool is also optional.

Note: The revisions listed are the versions used to build this application. Changes to the flow and/or
design may be needed when newer versions of the tools become available.

Reference Design Location

The reference design files are available on the Xilinx FTP site at:

http://www.xilinx.com/support/documentation/application_notes/xapp1004.zip.

Application Note: Virtex-4 FX FPGAs

XAPP1004 (v1.0) March 14, 2008

Single-Event Upset Mitigation Design Flow
for Xilinx FPGA PowerPC Systems
Authors: Greg Miller, Carl Carmichael, and Gary Swift

R

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp1004.zip
http://www.xilinx.com/ise
http://www.xilinx.com/edk
http://www.xilinx.com/tmrtool
www.xilinx.com/planahead

Introduction

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 2

R

Introduction In-orbit, space-based, and extra-terrestrial applications must consider the effects of high-
energy charged particles (radiation) can have on electronic components. In particular, SEUs
alter the logic state of any static memory element (latch, flip-flop, or RAM cell). Since the user-
programmed functionality of an FPGA depends on the data stored in millions of configuration
latches within the device, an SEU in the configuration memory array may have adverse effects
on the expected functionality. In addition, upsets in user block RAM can accumulate and must
be monitored and corrected. Simple triplication of the block RAM might not be enough. A
scrubbing macro is needed to allow the FPGA to self correct the upsets that accumulate in
block RAM. Refer to [Ref 2], [Ref 3] and [Ref 4] for details.

This application note describes the tool flow required to successfully design, implement and
mitigate a single-processor PowerPC design in a Virtex-4 FX device. The user must test the
system to determine if these techniques are sufficient for a system in application's target orbit.
The block RAM scrubber macro represented here exploits the dual-port nature of the Xilinx
block RAMs and uses the same basic structure and technique as used in [Ref 2]. The modified
example here replaces block RAMs used on the PLB.

Example
Processor
System
Overview

Embedded PowerPC 405 description

The PowerPC 405 embedded processor core is a reduced instruction set computer (RISC),
available in both the Virtex-2 Pro and Virtex-4 FX families. This core is a 64-bit architecture with
a 32-bit subset. As shown in Figure 1, the PPC405 contains a 5-stage pipeline, a virtual-
memory-management unit supporting multiple pages, separate instruction-cache and data-
cache units, debug support including a JTAG interface and three timers.

The PPC405 interfaces to the IBM processor local bus (PLB) for peripheral control. The PLB
structure and peripherals use the FPGA fabric resources such as slices, block RAMs and routing.

X-Ref Target - Figure 1

Figure 1: PowerPC 405 Organization

X1004_01_070207

I-Cache
Array

I-Cache
Controller

Instruction-Cache
Unit

D-Cache
Array

D-Cache
Controller

Data-Cache
Unit

Instruction
Shadow-TLB

(4-Entry)

Unified TLB
(64-Entry)

Data
Shadow-TLB

(8-Entry)

Execute Unit

32x32
GPR ALU MAC

3-Element
Fetch Queue

Fetch
and

Decode
Logic

Timers

Debug
Logic

PLB Master
Read Interface

PLB Master
Read Interface

PLB Master
Write Interface

Data
OCM

Instruction
OCM

JTAG
Instruction

Trace

CPUMMU

Timers
and

Debug
Cache Units

External-Interrupt
Controller Interface

http://www.xilinx.com

Example Processor System Overview

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 3

R

Example Test System Design

Figure 2 illustrates an example PPC405-based system used for this application note along with
its connections to the internal memory (internal block RAM) through the PLB For simplicity, the
flow illustrated in this example design does not use external RAM.

The device-under-test (DUT) I/Os are used as a data transfer bus between the DUT and monitoring
service FPGAs. For the purposes of this application note, the general-purpose I/O (GPIO) can be
anything the user desires and are included as a commonly used peripheral example.

Note: This application does not use digital clock managers (DCMs) because they are not easily
mitigated and add extra complexity to the system.

The architecture presented in Figure 2 is a common, simple PPC system, except the block
RAM is connected via the PLB. Alternatively the block RAM could connect via the on-chip
memory (OCM) interface. This application note demonstrates the use of the PLB block RAM
and not the OCM RAM (not shown in Figure 2). The block RAM used for code execution hangs
off of the PLB in this example. The PLB block RAM is used in this application note and the block
RAM scrubber macro replaces this PLB block RAM (see “Block RAM Correction Algorithm
Overview for the PLB Bus”).

The program code in this example resides in the internal block RAM memory using the PLB block
RAM controller. The code is pre-initialized in the block RAM each time the DUT is configured.

The PPC405 and system clock speed is variable depending of the system and TMR limitations.

X-Ref Target - Figure 2

Figure 2: XAPP1004 PPC System Block Diagram

PPC405

PLB Interface

JTAG PPC RESETJTAG

BRAM

RS22 Monitor
Dhrystone

PLB BUS

Virtex-4 FX FPGA

16550 GPI PLB BRAM

Executable
Code

rst

clk

x1004_02_013008

http://www.xilinx.com

Block RAM Correction Algorithm Overview for the PLB Bus

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 4

R

Block RAM
Correction
Algorithm
Overview for
the PLB Bus

The configuration scrubbing process does not correct errors in block RAM. One method for
scrubbing block RAM is to replace the RAM primitives with macros triplicating the block RAMs
and incorporating scrubbing logic (see [Ref 2]).

The main difference between the macro discussed in [Ref 2] and the one used in this example
design is that the wrapper for the single block RAM scrubber macro is modified for use with the
PLB bus, otherwise, the solutions are identical in operation.

Figure 3 illustrates the block diagram of the example system detailing where the block RAM
scrubber engine sits relative to the system. Resident in this block RAM is the CPU code
accessed via the PLB block RAM controller.

The block RAM self-correction algorithm is based on a hand-triplicated macro that replaces a
group of single-port block RAM primitives. The size and dimensions of the block RAM group
depend on the HDL code implementation. In the mitigation scheme detailed here, not every
FPGA block RAM primitive has an individual scrubber as many block RAM primitives can be
replaced with a single scrubber macro. Multiple BRAM scrubbers may be used in a design.

The block RAM scrubber (Figure 4) functions as follows:

1. An address count is presented at address port B of the block RAMs.

2. Data at address B is presented on port Data_outB.

3. Data is then voted and presented as corrected data on Din_B.

4. If an error is detected, WEB (write enable B) is activated and corrected data is written into
Din_B Data port Input B. The address counter for all three domains is paused.

5. After correction, the counter is restarted.

6. The address counter is incremented and the process is repeated.

X-Ref Target - Figure 3

Figure 3: PLB BUS BRAM Scrubber Macro

BRAM Scrubber Engine

16550 UART(PLB)

GP I/O

X
T

M
R

 P
LB

 B
U

S

PPC405 Core

PPC set to “Converge”

To RS-232

XTMR

MISC Signals

CPU Execution Code

x1004_03_092807

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 5

R

Mitigation
Process

Basic mitigation of a PowerPC system includes triplication of the surrounding logic and
converging into the PowerPC, since the PowerPC is a hard core and cannot be triplicated. For
more information on the TMRTool converge setting, see [Ref 1]. The goal is to mitigate as much
of the system as practically possible. Ideally, everything in the FPGA fabric around the
PowerPC is triplicated and converged into the PowerPC hard macro.

The next sections provide details on the exact steps of the design flow required to build the system.

Recommended Design Flow Overview
1. Create the non-mitigated hardware design using the XPS software (ISE software and EDK)

2. Create and compile the software to be executed on this platform. (EDK)

3. Modify and synthesize system_stub.vhd (or other top-level file) as needed for the
application's particular design needs.

4. Simulate or test the non-mitigated design (ISE software or hardware).

5. Build the block RAM scrubber replacement macro (.ds file) and the counter netlist.

6. Import the synthesized netlists for the system into the Xilinx TMRTool and set the specific
options for the user design.

7. Triplicate the embedded system using the Xilinx TMRTool.

8. Create triplicated versions of critical user files such as .bmm and .ucf.

9. Create a new ISE project and import the triplicated netlist (in EDIF format) along with the
other dependant files.

10. Place and route the completed file, generating a .bit file to configure the FPGA.

X-Ref Target - Figure 4

Notes:
1. [0|1|2] indicates triplication.

Figure 4: Block RAM Scrubber Block Diagram

Din_B

AB

Web

Data_OutB0

BRAM_Block0

VD

ERROR
Data_Voter0

Voted_Data0

Din_B

AB

Web

Data_OutB1

BRAM_Block1

VD

ERROR
Data_Voter1

Voted_Data1

Din_B

AB

Web

Data_OutB2

BRAM_Block2

VD

ERROR
Data_Voter2

Voted_Data2

Data_Out[0|1|2]

Address_CNTR

EN[0|1|2]

Address_B[0|1|2]

Error_indication[0|1|2]

CNT_TR[0|1|2]

COMPARATOR

ENB[0|1|2]

WEB[0|1|2]

•

CEN_BSCNTR_TMR
[0|1|2](1)

CEN_BSCNT_TMR[0|1|2]

BRAM ENB
for Address
Compare

ADDRA_[0|1|2]
+ WEA[0|1|2]

X1004_04_031408

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 6

R

Design Flow Details and Step-by-Step Instructions

The following sections contain detailed instructions on creating the mitigated system. The
completed design, located in the xapp1004.zip file, is provided for reference.

This design flow uses an organized directory structure (Table 1). The user may use any structure
desired, but it is highly recommended that the individual tool projects are organized into
separate directories, allowing projects to be easily re-run at any point during the implementation
phase. All directories are relative to where the user unpacked the example design.

Table 1: Recommended Directory Structure

Directory Comments

/installed_example_dir/

/Doc/ Contains readme.txt (describes test)

/ISE/ For ISE designs, pre-TMR. This directory can also include 'export to ISE from EDK designs'

/8.2iSP3 Version and service pack

/design_name1 Top or sub designs as needed

/design_name2 Top or sub designs as needed

/EDK For EDK designs, pre-TMR. This can also include design software code

/8.2iSP2 Version and service pack

/design_name1 Top or sub designs as needed

/design_name2 Top or sub designs as needed

/ISE_TMR For ISE designs, post TMR

/8.2iSP3 Version and service pack

/design_name1 Top or sub designs as needed

/design_name2 Top or sub designs as needed

/Sim Third-party simulation project directory, pre-TMR

/golden_designname1 Golden simulation .wlf generated separately for test comparisons

/MSSE_6.1b Simulator type and version, for example, ModelSim SE Version 6.1b

/design_name1 Design simulation MS project

/Sim_TMR Third-party simulation project directory, post-TMR

/golden_designname1 Golden simulation .wlf generated separately for test comparisons

/MSSE_6.1b Simulator type and version,

/design_name1 Design simulation MS project

/source All the source code for the project, separated by type

/coregen Core files created by CORE Generator™ software

/Macros Macros from TMRTool (.ds files)

/Netlists .edf or other netlists

/TB Testbench VHDL files

/VHDL All pertinent VHDL source (non-testbench, synthesizable) code

/Synthesis Third-party synthesis projects

/synplify_pro_8.4 Tool and version

/design_name1 Design name synthesis project

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp1004.zip

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 7

R

Reference Files Included in the Test Design

Table 2 lists the files included with the test design.

Design Flow Details

Step 1. Create and Compile the Software for Execution on this Platform (EDK)

The first step in the design flow is to build and verify the software to be run on the PPC405. The
software for this example design runs a Dhrystone test with some minor adjustments to how the
LEDs are driven to demonstrate the triplication process later in the application note. This
source code is typically written in C or in-line assembly language and is processed with the
EDK tool suite to produce an .elf file for loading into block RAM for code execution.

XPS provides a wizard interface called the Base System Builder (BSB) to configure and build a
system from scratch. BSB helps in obtaining the initial system which is then modified for the
example system.

Note: These instructions assume the user is familiar with the Xilinx EDK tool suite. In addition, this step
of the process is just for setup and is recorded here for reference. It is recommended for the user to
familiarize himself/herself with this design, but can be skipped if the user wants to go directly to the
mitigation process flow. The completed software is included with the source files.

/TMR_Tool Contains the TMRTool projects

/TMR_2.1.55 TMRTool version

/design_name1 Top or sub designs as needed

/design_name2 Top or sub designs as needed

Notes:
1. Some of the directory names listed above, reflect the software version numbers used in this example. These version numbers can change

in the future.
2. This design can be targeted to standard development boards (such as the ML405). In this case, the I/Os and clocks must be left un-

triplicated. However, for complete triplication of the I/Os, a custom board is needed. An example is the XRTC (Xilinx Radiation Test
Consortium) board. For more information on proper triplication techniques, see [Ref 1].

3. For the purposes of this guide, the ML405 is used because it is more readily accessible than the XRTC board.

Table 1: Recommended Directory Structure (Cont’d)

Directory Comments

Table 2: Included Files

File Description

plb_bram_if_cntlr_1_bram_wrapper_tmr.vhd
The block RAM scrubber connecting to the PLB block RAM as a scrubber
macro replacement. This module is already triplicated and includes the
scrubbing engine.

bram_scrubber_pkg.vhd
The main package file for the block RAM scrubber. This file is edited to
properly size the block RAM macro to the target design

BSCNTR.vhd The address counter for port B. This module must be triplicated before using.

bram_scrubber_data_voter.vhd The data voter for port B of the block RAMs.

bram_scrubber_bram_inst_bitw.vhd
Instantiation of the block RAMs needed in the block RAM scrubber
engine in:

plb_bram_if_cntlr_1_bram_wrapper_tmr

system.vhd

The top-level system file generated by EDK. This file may be modified to
accommodate the system for particular changes at a high level. For
instance, the user could remove the DCM at this level and replace it with
a clock enable.

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 8

R

1. Create the example XPS project:

Start XPS and select Base System Builder Wizard from the initial popup dialog. Choose
a directory for this project:

/installed_example_dir/EDK/8.2iSP2/system.xmp

Click OK. When prompted with "C:….\system.xmp file exists. Overwrite?”click Yes. Then
choose I would like to create a new design, and click Next.

Note: In the following screens, unless otherwise noted, click Next or Alt + N to continue.

2. Choose ML405 as the target board:

♦ Board Vendor: Xilinx

♦ Board Name: Virtex 4 ML405 Evaluation Platform

♦ Board Revision: 1

3. Select PowerPC as the processor.

4. Select clocking, PPC405 processor engine, and on-chip memory (OCM) options:

♦ Reference Clock Frequency = Processor Clock Frequency = Bus Clock Frequency =
100 MHz

♦ PowerPC 405 Processor Engine: FPGA JTAG

♦ Cache: Disabled (this setting is just enabled or disabled in the software)

♦ Accept the default of no OCM.

5. I/O devices:

Under “IO Devices” (Figure 5), deselect all options except:

♦ RS232_Uart (OPB_UARTLITE, 115200, 8, NONE)

♦ LEDs_ 4Bit

Deselect all other peripherals on the next two pages.

X-Ref Target - Figure 5

Figure 5: Configure IO Interfaces Dialog Window
X1004_05_031408

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 9

R

6. Select the memory size and build the system.

For the Peripheral PLB_BRAM_IF_CNTLR select 32KB for the memory size. Click
Finish or hit Enter to build the system. Allow the software to build the memory and
peripheral example tests. The memory test is not unusable for this design, but it is a good
reference.

7. Generate the project:

Click Next until the Generate button appears. Click Generate followed by Finish.

8. Start XPS:

Click Start using XPS.

9. Change the number of LEDs:

From the system assembly view, change the system such that it uses two-bit LEDs rather
than the original four-bit LEDs (Figure 6). This operation changes several EDK files and the
.ucf (see [Ref 5] for details).

10. Rename the LEDs_4bit to LEDs_2bit (optional).

Rename the I/Os and signal names in the.mhs file to indicate two bits. Change the port
vector size to two bits [1:0].

PORT fpga_0_LEDs_2Bit_GPIO_IO_pin = fpga_0_LEDs_2Bit_GPIO_IO, DIR = IO,
VEC = [0:1]

BEGIN opb_gpio
 PARAMETER INSTANCE = LEDs_2Bit
 PARAMETER HW_VER = 3.01.b
 PARAMETER C_GPIO_WIDTH = 2
 PARAMETER C_IS_DUAL = 0
 PARAMETER C_IS_BIDIR = 1
 PARAMETER C_ALL_INPUTS = 0
 PARAMETER C_BASEADDR = 0x40000000
 PARAMETER C_HIGHADDR = 0x4000ffff
 BUS_INTERFACE SOPB = opb
 PORT GPIO_IO = fpga_0_LEDs_2Bit_GPIO_IO
END

11. Modify the .mss file as follows:
BEGIN DRIVER
 PARAMETER DRIVER_NAME = gpio
 PARAMETER DRIVER_VER = 2.11.a
 PARAMETER HW_INSTANCE = LEDs_2Bit
END

X-Ref Target - Figure 6

Figure 6: opb_GPIO Parameters
X1004_06_031408

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 10

R

12. Edit the .ucf file to accommodate only two bits. The .ucf file can be edited while within
XPS. Refer to XPS documentation for details:

The .ucf file must be changed to accommodate only two bits (by changing LEDs_4Bit o
LEDs_2Bit) and allow one of the LEDs to point to DS13/pin G12 (by changing LOC=B10 to
LOC=G12). This change can be made directly in EDK and provides for visual verification of
triplicated I/Os by observing the LEDs.

Comment out the higher LED bits 2 and 3 that refer to the unused LED bits. Keep the lower
bits 0 and 1 as shown in the .ucf snippet below.

Net fpga_0_LEDs_2Bit_GPIO_IO_pin<0> LOC=A10;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin<0> IOSTANDARD = LVCMOS25;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin<0> PULLUP;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin<0> SLEW = SLOW;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin<0> DRIVE = 2;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin<0> TIG;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin<1> LOC=G12; #was B10
Net fpga_0_LEDs_2Bit_GPIO_IO_pin<1> IOSTANDARD = LVCMOS25;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin<1> PULLUP;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin<1> SLEW = SLOW;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin<1> DRIVE = 2;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin<1> TIG;

Comment out constraints for bits 2 and 3 below the constraints shown above.

13. Test the TestApp_Peripheral design (optional).

Connect a null-modem serial cable to the ML405 board. Set the serial monitor (such as
Hyperterminal) to 115200 baud (see [Ref 5], and [Ref 6]).

Note: If running the TestApp_Peripheral design, LEDs_4bit was renamed to LEDs_2bit. As a result,
some changes to the C code in the main call might be needed, for example:

status = GpioOutputExample(XPAR_LEDS_2BIT_DEVICE_ID,4);

Build the entire design and download the test design to the on-board FX20 device (see
[Ref 5], and [Ref 6]).

If the design is properly configured, the LEDs DS15, and DS13 light alternately (DS13 is
next to the GPIO_SW_W button).

The last three steps are optional, but recommended. These steps create a new software platform
for use with an open-source Dhrystone design — a much more interesting design for triplication.
This design is just for testing and may generate numbers that cannot be printed by xil_printf. The
change to xil_printf was made to allow the program to fit into the block RAM size allocated.

Note: The two LEDs indicate Dhrystone cycles.

14. Create a new software project:

Select Add a New Software Project from the software menu. Name the project Dhrystone
and select block RAM initialization.

15. Add source code:

Right-click on sources to add the source code for the Dhrystone design. Go to the
working directory/source/processor_code/Dhrystone and select the
following source files to add to the project:

Source Files:

config.c
dhry_2.c
xtime_l.c
dhry_1_nocache.c

Headers:

dhry.h
xtime_l.h

Note: This code has been modified from the original version for demonstration purposes and to fit
into the memory footprint available. This design is not intended to be an effective benchmark, but to
obtain a reference point.

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 11

R

16. Compile, build, and run the design:

Use EDK to directly compile, map, place and route, then to initialize the bitstream and
download the design to the board. Monitor the Dhrystone output using a terminal program
such as HyperTerminal set to 115000 baud.

The LEDs indicate if the processor is inside or outside the Dhrystone process. DS13
indicates the processor is in the Dhrystone process, and DS15 (GPIO_LED) indicates it is
outside the process (the latter should briefly blink indicating the number of Dhrystone
iterations completed).

The next steps begin the actual mitigation flow process.

Step 2. Modify and Synthesize the Top-Level File

The user must modify the top-level design wrapper to accommodate the special requirements
for the triplicated design. For example, in this PPC design, the DCM must be removed and the
appropriate signals connected. DCMs are hard to mitigate, and for purposes of this example
design, are removed. In addition, a clock disable is added to allow for smoke testing.

First, isolate and organize the project files from EDK:

1. Copy the .vhd file generated from EDK:

project_install_dir/EDK/8.2iSP2/hdl/system.vhd

to:

project_install_dir/source/VHDL/system.vhd

2. Copy the .ucf file from:

project_install_dir/EDK/8.2iSP2/data/system.ucf

to

project_install_dir/source/constraints/system.ucf.

Make another copy of the system.ucf in the same directory, and rename it
system_tmr.ucf for later use.

Note: A system_tmr.ucf file is included in the reference design archive for this application
note.

3. Copy the .bmm file from:

project_install_dir/EDK/8.2iSP2/implementation/system.bmm

to:

project_install_dir/source/constraints/system.bmm.

Make another copy of system.bmm in the same directory and name it system_tmr.bmm.

Note: A system_tmr.bmm file is included in the reference design archive for this application note.

Next, using ISE software (XST), synthesize the top-level HLD code to produce an .ngc netlist.
This netlist is used as the top level for TMRTool along with the system netlists (.ngo).

4. Launch ISE software and create a new ISE project in the
project_install_dir/ISE/8.2i_SP3, and name the design Dhrystone.

5. Click Next until "Add existing source" appears. Add the file system.vhd from the directory
project_install_dir/source/VHDL/. Be sure to uncheck Copy to Project.

6. Select the device on the ML405 board (XC4VFX20-FF672-10C). The top-level source is HDL.

7. Add the existing file system.ucf from the directory
project_install_dir/source/constraints/.Be sure to uncheck Copy to Project.
Click Next and Finish to complete.

8. While still in the ISE software, expand “Implement Design”. Right-click on Translate and
add ../../../EDK/8.2iSP2/implementation to the macro search path (Figure 7,
page 12). Click OK.

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 12

R

9. Add two more files (the .bmm and .elf) to the ISE project by right-clicking on the device
xc4fx20-10ff672 and selecting Add source. Add the file system.bmm from the directory
project_install_dir/source/constraints/ and the file executable.elf from
the directory project_install_dir/EDK/8.2iSP2/Dhrystone/.

Note: A script could be created to write out a .bit file instead of adding system.bmm and
executable.elf to the ISE project, with the block RAMs being loaded using data2mem. See
[Ref 5] for details.

10. (Optional) Before modifying the system.vhd and system.ucf files, the user can compile
the design, completing the rest of the process through BitGen and programing the device.
The design should operate as described in step 16, page 11.

11. The system.vhd file must be modified to remove the DCM and add a signal for button
control of the clock. Double-click on the file system.vhd inside the ISE project and make
the following changes:

Note: If system.vhd is corrupted, remember a copy is stored in the EDK directory under
implementation. Simply re-copy and start over.

Add one line at the beginning of the file under entity system to enable the control of the
clock (on/off), and name the pin clk_cntrl_pin.

entity system is
 port (
 clk_cntrl_pin : in std_logic;
 fpga_0_RS232_Uart_RX_pin : in std_logic;
 fpga_0_RS232_Uart_TX_pin : out std_logic;
 fpga_0_LEDs_2Bit_GPIO_IO_pin : inout std_logic_vector(0 to 1);
 sys_clk_pin : in std_logic;
 sys_rst_pin : in std_logic
);
end system;

Add the following component near the DCM component around line 664:

component BUFGCE
 port (
 I : in std_logic;
 CE : in std_logic;
 O : out std_logic
);
end component;

X-Ref Target - Figure 7

Figure 7: Translate Macro Path
X1004_07_031408

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 13

R

Comment out the dcm_0 : dcm_0_wrapper module and replace with a BUFGCE to feed
the system clock and control the clock from the pin added above (around line 1430).

-- dcm_0 : dcm_0_wrapper
-- port map (
-- RST => net_gnd0,
-- CLKIN => dcm_clk_s,
-- CLKFB => sys_clk_s,
-- PSEN => net_gnd0,
-- PSINCDEC => net_gnd0,
-- PSCLK => net_gnd0,
-- DSSEN => net_gnd0,
-- CLK0 => sys_clk_s,
-- CLK90 => open,
-- CLK180 => open,
-- CLK270 => open,
-- CLKDV => open,
-- CLK2X => open,
-- CLK2X180 => open,
-- CLKFX => open,
-- CLKFX180 => open,
-- STATUS => open,
-- LOCKED => dcm_0_lock,
-- PSDONE => open
--);

--
 BUFG_MAIN_CLK : BUFGCE
 port map
 (
 I => dcm_clk_s,
 CE => not clk_cntrl_pin,
 O => sys_clk_s
);

Add the following lines to system.ucf in
project_install_dir/source/constraints/ by clicking on the .ucf or by double-
clicking on Edit Constraints (Text) in the Processes window:

##
NET "clk_cntrl_pin" LOC = K8;
NET "clk_cntrl_pin" TIG;
##

Force an enable on the dcm_locked signal on the reset controller by completing the
following changes (around line 1077).

reset_block : reset_block_wrapper
 port map (
 Slowest_sync_clk => sys_clk_s,
 Ext_Reset_In => sys_rst_s,
 Aux_Reset_In => net_gnd0,
 Core_Reset_Req => C405RSTCORERESETREQ,
 Chip_Reset_Req => C405RSTCHIPRESETREQ,
 System_Reset_Req => C405RSTSYSRESETREQ,
-- Dcm_locked => dcm_0_lock,
 Dcm_locked => '1',
 Rstc405resetcore => RSTC405RESETCORE,
 Rstc405resetchip => RSTC405RESETCHIP,
 Rstc405resetsys => RSTC405RESETSYS,
 Bus_Struct_Reset => sys_bus_reset(0 to 0),
 Peripheral_Reset => open

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 14

R

Step 3. Test and/or Simulate the Non-Mitigated Design in Hardware
(ISE software/EDK plus Hardware)

After the hardware system is built using XPS, and the processor code written and tested with
the EDK flow, a test of the non-mitigated version in hardware is essential to ensure the changes
to the system files are correct.

After the changes are made in “Step 2. Modify and Synthesize the Top-Level File,” recompile and
re-build the .bit file using the ISE flow and the Dhrystone design built in “Step 1. Create and
Compile the Software for Execution on this Platform (EDK).” The entire flow can be run by double-
clicking Generate Programming File. Reprogram the device to ensure it functions as before.

The design modifications in “Step 2. Modify and Synthesize the Top-Level File” allow the clock
to be disabled by pressing the GPIO_SW_W (sw7) button. Press the button to verify that the
design halts and is restored when the button is released.

Figure 8 shows the ISE flow for non-mitigated ISE project Dhrystone generated by EDK from
“Step 2. Modify and Synthesize the Top-Level File.”

.

Step 4. Build the Block RAM Scrubber Replacement Macro (.ds File) and the
Counter Netlist

A block RAM scrubber is needed to refresh the PLB-controlled block RAM containing
executable code to prevent the data from becoming stale. After the parameters are set in the
VHDL code (bram_scrubber_pkg.vhd), the block RAM replacement scrubber ports match
those for the block RAM created during the system creation. For this design, a setting of
data_width=64/ addr_width=12, we_num = 8 and scrub_delay = 1 are used.

Note: When the block RAM scrubber wrapper plb_bram_if_cntlr_1_bram_wrapper_tmr is
used to replace plb_bram_if_cntlr_1_bram_wrapper (PLB block RAM controller), port B is
not used. Omitting the use of port B is the key to the use of the block RAM scrubber.

For this step, use XST to synthesize the block RAM scrubber macro replacement (top level:
plb_bram_if_cntlr_1_bram_wrapper_tmr) to create the proper .ngc file to use in
TMRTool.

X-Ref Target - Figure 8

Figure 8: ISE Non-Mitigated System
X1004_08_031408

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 15

R

1. Launch ISE software and create a new ISE project in the
project_install_dir/ISE/8.2i_SP3 and name the design
plb_bram_if_cntlr_1_bram_wrapper_tmr.

2. Set up the project as in “Step 2. Modify and Synthesize the Top-Level File,” (FX20-10, etc.)
and add the following files (Figure 9):

project_install_dir/source/VHDL/plb_bram_if_cntlr_1_bram_wrapper_tmr.vhd
project_install_dir/source/VHDL/bram_scrubber_bram_inst_bitw.vhd
project_install_dir/source/VHDL/bram_scrubber_pkg.vhd
project_install_dir/source/VHDL/bram_scrubber_data_voter.vhd

Caution! Make sure to set the option in ISE software to not copy the files to the project directory.

For this application note, the block RAM scrubber for the PLB is marked as version 8.2.3.
X-Ref Target - Figure 9

Figure 9: The plb_bram_if_cntlr_1_bram_wrapper_tmr Project

X1004_09_031408

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 16

R

3. Right-click on Synthesize - XST under processes, then click on Synthesis Directives and
make the following changes (Figure 10):

♦ Add I/O Buffers (uncheck).

♦ Number of Global Clock Buffers should be 0.

These changes are needed because this is a sub level in the TMR process (neither I/O nor
clock buffers are needed).

4. Click on the libraries tab under sources, and expand the Work source library. Double-click
on the bram_scrubber_pkg.vhd file, and ensure that the constants under the
bram_scrubber_package are set as follows:

♦ constant data_width : integer := 64

♦ constant addr_width : integer := 12;

♦ constant we_num : integer := 8;

♦ constant BRAM_Data_Size : integer := 4;

♦ constant scrub_delay : integer := 1;

These constants allow for building different sizes of the block RAM scrubber. There are two
places where changes are needed:

♦ bram_scrubber_pkg.vhd (as shown in the declare constants section of the VHDL
file. Descriptions of the constants are contained in the VHDL file.)

♦ bram_scrubber_bram_inst_bitw.vhd (instantiation for BRAM primitive type.
Changes are needed in two locations to accomplish the BRAM primitive instantiation:
the component section and in the for loop. For this design, the instantiation is set to
ramb16_s4_s4 and does not need to be modified. See [Ref 2] for more details.)

To build the netlist, double-click on Synthesize-XST.

5. Next, import the synthesized netlist into TMRTool. Importing the .ngc file creates the .ds
file. This netlist is pre-TMR since this part of the design is hand triplicated. Even though
TMRTool indicates it is pre-XTMR, it is still triplicated (previously by hand). See [Ref 1] for
details on macro use.

6. Open TMRTool and select File → New Project. Create the project under
project_install_dir/TMR_Tool/TMR_2.1.55/. Add a slash after the directory
name or TMRTool might create the project one level up. Name the project
plb_bram_if_cntrl_1_bram_wrapper_tmr, then click OK (Figure 11).

Note: The application note design archive already contains this project. Either use the existing
project or create a new one.

X-Ref Target - Figure 10

Figure 10: ISE Synthesis Options
X1004_10_031408

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 17

R

7. Add the netlist created in step 4, page 16, by right-clicking in "Sources for Project" and
selecting Set Top Level Source. Browse to:

project_install_dir/ISE/8.2SP3/plb_bram_if_cntlr_1_bram_wrapper_tmr

and select plb_bram_if_cntlr_1_bram_wrapper_tmr.ngc. Click Open.

8. While still in TMRTool, double-click on Import under “Processes for Source” to create the
needed macro for use later in the system triplication process. This macro replaces the PLB
block RAMs with the PLB block RAM scrubber macro.

Copy the .ds file into the TMRTool_Install_Dir/macrolib/USER directory. The .ds
custom macro is now ready for use.

9. In Windows, browse to:

project_install_dir/TMR_Tool/TMR_2.1.55/plb_bram_if_cntrl_1_bram_
wrapper_tmr

and copy the file plb_bram_if_cntrl_1_bram_wrapper_tmr.ds to
TMRTool_install_dir/macrolib/USER. The PLB block RAM macro is now ready for use.

Synthesize the address counter (BSCNTR.vhd) and use TMRTool to triplicate it. This counter is
used to continually cycle though the addresses to check block RAM integrity and needs to be
triplicated.

10. Launch ISE software and create a new ISE project in the
project_install_dir/ISE/8.2i_SP2 and name the design BSCNTR.

11. Set up the project as in the above projects (FX20-10 etc…) and add the following files:

project_install_dir/source/VHDL/BSCNTR.vhd
project_install_dir/source/VHDL/bram_scrubber_pkg.vhd

Caution! Do not copy the files to the project directory.

12. Make the same changes to Synthesize - XST as in step 3, page 16 (Figure 9, page 15 and
Figure 10, page 16). Double-click on Synthesize-XST to build the netlist.

Use TMRTool to triplicate the counter and produce a triplicated EDIF netlist. Make sure to tell
TMRTool to produce a "Design Module". This netlist is needed when placing and routing the entire
design. Copy this EDIF file to a convenient location so that it is visible to the ngdbuild process.

13. Open TMRTool and select New Project under the File directory. Create the project under
project_install_dir/TMR_Tool/TMR_2.1.55/. Add a slash after the directory name
or TMRTool may create the project one level up. Name the project BSCNTR, then click OK
(Figure 12).

X-Ref Target - Figure 11

Figure 11: Creation of TMRTool BRAM Scrubber Wrapper Project

X-Ref Target - Figure 12

Figure 12: Creating Project BSCNTR

X1004_11_031408

X1004_12_031408

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 18

R

14. Add the netlist created in step 9, by right-clicking in "Sources for Project" and selecting Set
Top Level Source. Brows to project_install_dir/ISE/8.2SP3/BSCNTR/ and
select BSCNTR.ngc. Click Open.

15. Right-Click on Implement XTMR in “Processes for Source”. Uncheck Replace Registers
and Extract GND/VCC (Figure 13).

16. Within the same window, Click “Process Settings” and change the “Design Type” to Design
Module. Uncheck Replace SRL 16s, and click OK (Figure 14).

17. Double-click Export Design under “Processes for Source”. This process generates the
triplicated netlist used in the final processing of the triplicated design.

18. Within Windows, browse to the
project_install_dir/TMR_Tool/TMR_2.1.55/BSCNTR and find the file
BSCNTR_xtmr.edf created in step 17 for use in the final step to build the PPC triplicated
system with the block RAM scrubber. Copy the file BSCNTR_xtmr.edf to the
project_install_dir/source/Netlists directory so that translate can insert this
netlist when building the final system.

Step 5. Import the Hardware System Top-Level Netlist and the Synthesized
Netlists (TMRTool)

For this step, the entire EDK system infrastructure is imported into the TMRTool for triplication.

Note: The main system netlists can usually be found in the EDK project directory under
../implementation.

1. Open TMRTool and select File → New Project, and create the project under
project_install_dir/TMR_Tool/TMR_2.1.55/. Add a slash after the directory name
or TMRTool may create the project one level up. Name the project ppc_ds_tmr_bs, and
then click OK.

2. Add the top level netlist created in “Step 2. Modify and Synthesize the Top-Level File,”
page 11 by right-clicking in "Sources for Project" and selecting Set Top Level Source.
Browse to project_install_dir/ISE/8.2SP3/Dhrystone/, select system.ngc, and
click Open.

X-Ref Target - Figure 13

Figure 13: TMRTool BSCNTR Process Steps

X-Ref Target - Figure 14

Figure 14: TMRTool BSCNTR Process Settings

X1004_13_031408

X1004_14_031408

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 19

R

3. Add the sub-level netlists created by EDK in “Step 1. Create and Compile the Software for
Execution on this Platform (EDK),” page 7 by right-clicking in "Sources for Project" and
selecting Add Source. Browse to:

project_install_dir/EDK/8.2iSP2/implementation/

And select the following files to add to the TMRTool project (Figure 15):

jtagppc_0_wrapper.ngc

leds_2bit_wrapper.ngc

opb_wrapper.ngc

plb_bram_if_cntlr_1_bram_wrapper.ngc

plb_wrapper.ngc

ppc405_0_wrapper.ngc

plb2opb_wrapper.ngc

reset_block_wrapper.ngc

rs232_uart_wrapper.ngc

Note: The file plb_bram_if_cntlr_1_bram_wrapper.ngc is not included, because it is
replaced with the block RAM scrubber macro.

4. Double-click on Edit XTMR Types to import the design and display the Set XTMR Types on
the right pane.

Set TMRTool options for the user specific system design. For example, in the Dhrystone
system, the PPC 405 is set to converge and the plb_bram_if_cntlr_1_bram_wrapper is
replaced with the block RAM scrubber macro (plb_bram_cntrl_1_bram_wrapper_tmr_pretmr).

X-Ref Target - Figure 15

Figure 15: Project ppc_ds_tmr_bs in TMRTool

X1004_15_031408

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 20

R

5. Once the design is imported, make the following changes to the components under XTMR
Types pull-down menu (refer to [Ref 1] for details).

Set the following to converge:

♦ PPC405_ADV

♦ JTAGPPC

♦ JTAGPPC_0_WRAPPER

Expand Set plb_bram_if_cntlr_1_bram_wrapper and set plb_bram_if_cntlr_1_bram_wrapper
to “Custom”. Then select plb_bram_if_cntlr_1_wrapper_tmr_prextmr under the user directory,
and click OK (Figure 16).

Expand IBUF and set the following to "Don't Touch":

♦ fpga_0_RS232_Uart_RX_pin_IBUF

♦ sys_rst_pin_IBUF

Expand OBUF and set the following to "Don't Touch":

♦ fpga_0_RS232_Uart_TX_pin_OBUF to converge

Expand IBUFG and set the following to "Don't Touch":

♦ sys_clk_pin_IBUFG

6. Right-click on Implement XTMR under the “Processes for Source” window and select
Properties. Make the following changes in the Process Steps tab (Figure 17).

♦ Uncheck Replace Registers.

♦ Uncheck Extract Vcc/Gnd.

♦ Leave all other options checked.

X-Ref Target - Figure 16

Figure 16: Custom Macro Selection

X-Ref Target - Figure 17

Figure 17: TMRTool Dhrystone Process Steps

X1004_16_031408

X1004_17_031408

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 21

R

Within the same window check the Process settings tab and make the following changes
(Figure 18):

♦ Uncheck Replace Shift Register LUT's.

♦ Leave all other options as is.

Step 6. Triplicate the Embedded System Using the Xilinx TMRTool and Produce
a Triplicated Netlist (TMRTool)

When all the options are set, tell TMRTool to begin triplication of the design (all logic
surrounding the PPC is triplicated), and insert the block RAM scrubber macro for the PLB block
RAM replacement. The resulting netlist contains the entire mitigated design except for the block
RAM scrubber address counter to be used later.

1. Double-click Export Design under “Processes for Source”. This process can take a few
minutes while it produces the triplicated system netlist for the PowerPC system.

Step 7. Create a Triplicated Version of .ucf

For creation of the triplicated .ucf file, please see [Ref 1]. The example .ucf included here for
this design is created for reference only as this file is design dependant.

1. Copy the system.ucf from project_install_dir/EDK/8.2iSP2/data to
project_install_dir/source/constraints. This file is the same as modified in
“Step 1. Create and Compile the Software for Execution on this Platform (EDK),” page 7 for
changes to the LEDs, etc. Rename this file to system_tmr.ucf to indicate that this is the
triplicated version.

2. Change the .ucf file to the triplicated version. Modify the triplicated .ucf file
system_tmr.ucf similar to the following:

Set for CES4 chip
CONFIG STEPPING = "SCD1";

Net sys_clk_pin LOC=AB14;
Net sys_clk_pin IOSTANDARD = LVCMOS33;
Net sys_rst_pin LOC=M5;
Net sys_rst_pin PULLUP;
System level constraints
Net sys_clk_pin TNM_NET = sys_clk_pin;
#TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 10000 ps;

Net sys_clk_s_TR0 TNM_NET = sys_clk_s_TR0;
TIMESPEC "TS_sys_clk_s_TR0" = PERIOD "sys_clk_s_TR0" 10 ns HIGH 50 %;
Net sys_clk_s_TR1 TNM_NET = sys_clk_s_TR1;
TIMESPEC "TS_sys_clk_s_TR1" = PERIOD "sys_clk_s_TR1" "TS_sys_clk_s_TR0" * 1;
Net sys_clk_s_TR2 TNM_NET = sys_clk_s_TR2;
TIMESPEC "TS_sys_clk_s_TR2" = PERIOD "sys_clk_s_TR2" "TS_sys_clk_s_TR0" * 1;
Net sys_rst_pin TIG;
NET "*C405RSTCORERESETREQ*" TPTHRU = "RST_GRP";
NET "*C405RSTCHIPRESETREQ*" TPTHRU = "RST_GRP";
NET "*C405RSTSYSRESETREQ*" TPTHRU = "RST_GRP";
TIMESPEC "TS_RST1" = FROM CPUS THRU RST_GRP TO FFS TIG;

X-Ref Target - Figure 18

Figure 18: TMRTool Dhrystone Process Settings
X1004_18_031408

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 22

R

IO Devices constraints

Module RS232_Uart constraints

Net fpga_0_RS232_Uart_RX_pin LOC=T4;
Net fpga_0_RS232_Uart_RX_pin IOSTANDARD = LVCMOS33;
Net fpga_0_RS232_Uart_TX_pin LOC=T8;
Net fpga_0_RS232_Uart_TX_pin IOSTANDARD = LVCMOS33;

##
NET "clk_cntrl_pin_TR0" LOC = K8; #NET gpio<10> LOC = K8; # W Button
NET "clk_cntrl_pin_TR0" TIG;

NET "clk_cntrl_pin_TR1" LOC = D6; #NET gpio<10> LOC = K8; # W Button
NET "clk_cntrl_pin_TR1" TIG;

NET "clk_cntrl_pin_TR2" LOC = M6; #NET gpio<10> LOC = K8; # W Button
NET "clk_cntrl_pin_TR2" TIG;
##

Module LEDs_4Bit constraints

Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR0<0> LOC=A10;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR0<0> IOSTANDARD = LVCMOS25;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR0<0> PULLUP;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR0<0> SLEW = SLOW;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR0<0> DRIVE = 2;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR0<0> TIG;

Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR1<0> LOC=B10;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR1<0> IOSTANDARD = LVCMOS25;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR1<0> PULLUP;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR1<0> SLEW = SLOW;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR1<0> DRIVE = 2;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR1<0> TIG;

Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR2<0> LOC=F13;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR2<0> IOSTANDARD = LVCMOS25;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR2<0> PULLUP;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR2<0> SLEW = SLOW;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR2<0> DRIVE = 2;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR2<0> TIG;

Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR0<1> LOC=G12; #was B10
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR0<1> IOSTANDARD = LVCMOS25;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR0<1> PULLUP;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR0<1> SLEW = SLOW;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR0<1> DRIVE = 2;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR0<1> TIG;

Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR1<1> LOC=E6;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR1<1> IOSTANDARD = LVCMOS25;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR1<1> PULLUP;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR1<1> SLEW = SLOW;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR1<1> DRIVE = 2;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR1<1> TIG;

Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR2<1> LOC=L7;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR2<1> IOSTANDARD = LVCMOS25;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR2<1> PULLUP;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR2<1> SLEW = SLOW;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR2<1> DRIVE = 2;
Net fpga_0_LEDs_2Bit_GPIO_IO_pin_TR2<1> TIG;

The system constraint files are now be ready for use in the final mitigated system design.

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 23

R

Step 8. Create a Triplicated Version of .bmm

A .bmm file is necessary if the user needs to initialize the code. The executable code (.elf file)
can be loaded via the debug port using the Xilinx microprocessor debugger (XMD). However, to
create a .bit file that runs without the XMD interface, it is necessary to use the .bmm file.

The creation of the triplicated .bmm file is not straightforward. The structure of this file depends
on the size of the block RAM memory address range, the types of block RAMs used, whether
the design is triplicated with the block RAM scrubber or not. Examples of the .bmm file are
provided with the source files for reference (the .bmm (triplicated system only) and the .bmm
with the block RAM scrubber).

The suggested method for creating the triplicated .bmm file is to start with a copy of the non-
triplicated version, first making the triplicated version without the block RAM scrubber, followed
by the final version with the block RAM scrubber. By making the triplicated version first, the user
has the option to test the triplicated system for proper functionality without the block RAM
scrubber. The Xilinx Tool PlanAhead can assist the user in the process of making the proper
.bmm files. By importing the netlist into PlanAhead, and clicking on the PLB controller block
RAMs, the hierarchical pattern is displayed. PlanAhead helps display the proper block RAM
hierarchal netlist used in the creation of the triplicated .bmm file.

1. Copy the system.bmm file from:

project_install_dir/EDK/8.2iSP2/implementation

to:

project_install_dir/source/constraints.

Rename the file to system_tmr_bs.bmm (TMRed with block RAM scrubber)

2. Change the .bmm file to the triplicated version. The .bmm file in this example
accommodates for the block RAM scrubber.

To create the triplicated .bmm file system_tmr_bs.bmm similar to the following:

ADDRESS_MAP ppc405_0 PPC405 100
ADDRESS_SPACE plb_bram_if_cntlr_1_bram_combined_TR0 COMBINED [0xffff8000:0xffffffff]
ADDRESS_RANGE RAMB16
BUS_BLOCK

 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR0/bram[7].raminfr_inst/br[1].ramb16_s4_s4_inst [63:60];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR0/bram[7].raminfr_inst/br[0].ramb16_s4_s4_inst [59:56];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR0/bram[6].raminfr_inst/br[1].ramb16_s4_s4_inst [55:52];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR0/bram[6].raminfr_inst/br[0].ramb16_s4_s4_inst [51:48];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR0/bram[5].raminfr_inst/br[1].ramb16_s4_s4_inst [47:44];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR0/bram[5].raminfr_inst/br[0].ramb16_s4_s4_inst [43:40];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR0/bram[4].raminfr_inst/br[1].ramb16_s4_s4_inst [39:36];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR0/bram[4].raminfr_inst/br[0].ramb16_s4_s4_inst [35:32];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR0/bram[3].raminfr_inst/br[1].ramb16_s4_s4_inst [31:28];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR0/bram[3].raminfr_inst/br[0].ramb16_s4_s4_inst [27:24];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR0/bram[2].raminfr_inst/br[1].ramb16_s4_s4_inst [23:20];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR0/bram[2].raminfr_inst/br[0].ramb16_s4_s4_inst [19:16];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR0/bram[1].raminfr_inst/br[1].ramb16_s4_s4_inst [15:12];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR0/bram[1].raminfr_inst/br[0].ramb16_s4_s4_inst [11:8];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR0/bram[0].raminfr_inst/br[1].ramb16_s4_s4_inst [7:4];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR0/bram[0].raminfr_inst/br[0].ramb16_s4_s4_inst [3:0];
 END_BUS_BLOCK;
 END_ADDRESS_RANGE;
END_ADDRESS_SPACE;

 ADDRESS_SPACE plb_bram_if_cntlr_1_bram_combined_TR1 COMBINED [0xffff8000:0xffffffff]

ADDRESS_RANGE RAMB16
 BUS_BLOCK
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR1/bram[7].raminfr_inst/br[1].ramb16_s4_s4_inst [63:60];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR1/bram[7].raminfr_inst/br[0].ramb16_s4_s4_inst [59:56];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR1/bram[6].raminfr_inst/br[1].ramb16_s4_s4_inst [55:52];

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 24

R

 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR1/bram[6].raminfr_inst/br[0].ramb16_s4_s4_inst [51:48];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR1/bram[5].raminfr_inst/br[1].ramb16_s4_s4_inst [47:44];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR1/bram[5].raminfr_inst/br[0].ramb16_s4_s4_inst [43:40];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR1/bram[4].raminfr_inst/br[1].ramb16_s4_s4_inst [39:36];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR1/bram[4].raminfr_inst/br[0].ramb16_s4_s4_inst [35:32];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR1/bram[3].raminfr_inst/br[1].ramb16_s4_s4_inst [31:28];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR1/bram[3].raminfr_inst/br[0].ramb16_s4_s4_inst [27:24];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR1/bram[2].raminfr_inst/br[1].ramb16_s4_s4_inst [23:20];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR1/bram[2].raminfr_inst/br[0].ramb16_s4_s4_inst [19:16];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR1/bram[1].raminfr_inst/br[1].ramb16_s4_s4_inst [15:12];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR1/bram[1].raminfr_inst/br[0].ramb16_s4_s4_inst [11:8];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR1/bram[0].raminfr_inst/br[1].ramb16_s4_s4_inst [7:4];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR1/bram[0].raminfr_inst/br[0].ramb16_s4_s4_inst [3:0];
 END_BUS_BLOCK;

END_ADDRESS_RANGE;
END_ADDRESS_SPACE;

 ADDRESS_SPACE plb_bram_if_cntlr_1_bram_combined_TR2 COMBINED [0xffff8000:0xffffffff]

ADDRESS_RANGE RAMB16
 BUS_BLOCK
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[7].raminfr_inst/br[1].ramb16_s4_s4_inst [63:60];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[7].raminfr_inst/br[0].ramb16_s4_s4_inst [59:56];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[6].raminfr_inst/br[1].ramb16_s4_s4_inst [55:52];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[6].raminfr_inst/br[0].ramb16_s4_s4_inst [51:48];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[5].raminfr_inst/br[1].ramb16_s4_s4_inst [47:44];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[5].raminfr_inst/br[0].ramb16_s4_s4_inst [43:40];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[4].raminfr_inst/br[1].ramb16_s4_s4_inst [39:36];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[4].raminfr_inst/br[0].ramb16_s4_s4_inst [35:32];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[3].raminfr_inst/br[1].ramb16_s4_s4_inst [31:28];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[3].raminfr_inst/br[0].ramb16_s4_s4_inst [27:24];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[2].raminfr_inst/br[1].ramb16_s4_s4_inst [23:20];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[2].raminfr_inst/br[0].ramb16_s4_s4_inst [19:16];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[1].raminfr_inst/br[1].ramb16_s4_s4_inst [15:12];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[1].raminfr_inst/br[0].ramb16_s4_s4_inst [11:8];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[0].raminfr_inst/br[1].ramb16_s4_s4_inst [7:4];
 plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[0].raminfr_inst/br[0].ramb16_s4_s4_inst [3:0];
 END_BUS_BLOCK;

END_ADDRESS_RANGE;
END_ADDRESS_SPACE;

END_ADDRESS_MAP;

Step 9. Create a New ISE Project and Import the Triplicated Netlist (in EDIF
Format) with the Other Dependant Files

Use ISE software to make a project for the final place and route. This step involves importing
the triplicated .edf netlist, triplicated .ucf, triplicated .bmm and the executable .elf file. It is
also necessary to tell ngdbuild where the triplicated counter netlist resides.

1. Launch ISE software and create a new ISE project in the
project_install_dir/ISE_TMR/8.3iSP3, and name the design Dhrystone_tmr_bs.

2. Select the device resident on the ML405 board (XC4VFX20-FF672-10C). The top-level
source is EDIF.

3. Click Next until "Add existing source" appears, then add ppc_ds_tmr_bs_xtmr.edf
from project_install_dir/TMR_Tool/TMR_2.1.55/ppc_ds_tmr_bs (the triplicated
system netlist created from “Step 6. Triplicate the Embedded System Using the Xilinx
TMRTool and Produce a Triplicated Netlist (TMRTool),” page 21. Uncheck Copy to Project,
then click Next until the project is created.

4). Right-click the part and select Add Source, and select the following files (Figure 19):

project_install_dir/EDK/8.2iSP2/Dhrystone/executable.elf
project_install_dir/source/constraints/system_tmr.ucf
project_install_dir/source/constraints/system_tmr_bs.bmm

http://www.xilinx.com

Mitigation Process

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 25

R

4. Expand Implement Design under “Processes”. Right-click on Translate, add
../../../source/Netlists to the macro search path, and then click OK.

Step 10. Place and Route to Create a .bit file to Configure the FPGA

After the final project is set up, this step runs place and route to generate the final .bit file for
programming the target device. Programing the device ensures correct functionality and
verifies that the final design meets the timing requirements.

1. Produce a .bit file by double-clicking on Generate Programming File.

Note: If using this design with a configuration scrubber on another board (such as the XRTC
radiation test board), be sure to select Allow select map bit to persist.

2. Inspect the place-and-route timing report to verify timing was met.

3. Run Impact and program the device as in the previous steps. Make sure the system is
running by verifying that LEDs, DS14, DS12, and DS11, are blinking alternately with LEDs,
DS15, DS4, and DS3. Also, using the RS-232 interface terminal as before, verify the
Dhrystone output is running. Since this design is triplicated, there are six LEDs indicating
Dhrystone status instead of the two as before. In addition, buttons GPIO_SW_W (SW7),
GPIO_SW_C (SW6), and GPIO_SW_E (SW5) control the functionality of clock domains
0,1, and 2 respectively.

X-Ref Target - Figure 19

Figure 19: Adding Source Files
X1004_19_031408

http://www.xilinx.com

Resource Evaluation

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 26

R

Resource
Evaluation

Table 3 one shows the system building blocks for the test design.

For the example design, the entire system except for the PPC was triplicated, resulting in a
change in the resource utilization and timing versus a non-mitigated design.

Table 4 shows the comparison between the standard and mitigated designs in FPGA resource
utilization. As for maximum frequency, a value of 100Mhz is used. This frequency setting is not
the maximum possible, but was chosen for experimental and peripheral operational
consistency purposes.

Smoke Testing
and Verification
of the Mitigated
PPC System

The last phase of the design flow is to complete the smoke test of the mitigated PPC system
(the example Dhrystone design used in this application note has the smoke test capability built
in). A smoke test is just a simple way to test the mitigated system by disabling parts of the
design to ensure the design still functions as intended. The user can simply shut off the clocks
to the system using buttons on the ML405 board to accomplish this smoke test.

Verification of the block RAM scrubber can be completed in one of two ways, either:

• Load bogus data into the third copy of the block RAMs (domain 2). Then turn off the other
system clock (domain 1). The system now votes on the block RAM output. If the block
RAM scrubber is not running, then the system stops functioning because there is bad data
arriving from domain 2 (bogus data) and from domain 1 (no clock).

• Verify the block RAM scrubber with ChipScope analyzer (refer to [Ref 9] for details). The
example system contains the source code for a ChipScope analyzer inside the block RAM
scrubber. The ICON and ILA cores reside in the /Netlists directory. Edit the
plb_bram_if_cntlr_1_bram_wrapper_tmr.vhd file to uncomment the ICON/ILA
core and signals to the triggers. Re-run the design. Evoke the ChipScope analyzer, and
name the signals. Observe the block RAM scrubber in action (this is left as an exercise for
the reader).

Perform the Smoke Test
1. For a simple clock domain smoke test, press button SW6. This shuts off clock domain 1.

Also, release SW6 and press SW5, shutting off clock domain 2.

Note: Pressing SW7 shuts off the main clock domain (feeding the PPC), and the system ceases to
function. The processor stopping is the single point of failure in the mitigated single-PPC system.

Table 3: Reference Design Resource Evaluation

Tested
Design PPC405 Reset Cntrl Jtag_ppc Plb_bus Plb_gpio Plb_BRAM

cntrl BRAMs UART_Lite

Dhrystone
Test converge in funcmon converge trip trip trip BR_scrubber trip

Table 4: Device Utilization

Tested Design No. of FFs No. of LUTs No. of
LUT-RAMs

No. of
BRAMs

No. of
BUFGCTRLs No. of I/Os No. of

MULTs

Single Dhrystone
design 935 (5%) 861 (5%) 0 16 (23%) 1 (3%) 7 (2%) 0 (0%)

Mitigated
Dhrystone test
design

2849 (16%) 3829 (22%) 0 48 (70%) 3 (9%) 13 (4%) 0 (0%)

Notes:
1. The global clocks are triplicated for this design, but only one physical clock actually feeds the FPGA due to limitations of the ML405 board.

http://www.xilinx.com

Improvements Under Consideration

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 27

R

2. To test the block RAM scrubber, load the ISE design from “Step 8. Create a Triplicated
Version of .bmm,” page 23. Comment out the third block RAM in the .bmm file, causing the
third copy of the block RAM to be loaded with zeros:

ADDRESS_MAP ppc405_0 PPC405 100
// ADDRESS_SPACE plb_bram_if_cntlr_1_bram_combined_TR2 COMBINED [0xffff8000:0xffffffff]
// ADDRESS_RANGE RAMB16
// BUS_BLOCK
// plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[7].raminfr_inst/br[1].ramb16_s4_s4_inst [63:60];
// plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[7].raminfr_inst/br[0].ramb16_s4_s4_inst [59:56];
// plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[6].raminfr_inst/br[1].ramb16_s4_s4_inst [55:52];
// plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[6].raminfr_inst/br[0].ramb16_s4_s4_inst [51:48];
// plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[5].raminfr_inst/br[1].ramb16_s4_s4_inst [47:44];
// plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[5].raminfr_inst/br[0].ramb16_s4_s4_inst [43:40];
// plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[4].raminfr_inst/br[1].ramb16_s4_s4_inst [39:36];
// plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[4].raminfr_inst/br[0].ramb16_s4_s4_inst [35:32];
// plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[3].raminfr_inst/br[1].ramb16_s4_s4_inst [31:28];
// plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[3].raminfr_inst/br[0].ramb16_s4_s4_inst [27:24];
// plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[2].raminfr_inst/br[1].ramb16_s4_s4_inst [23:20];
// plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[2].raminfr_inst/br[0].ramb16_s4_s4_inst [19:16];
// plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[1].raminfr_inst/br[1].ramb16_s4_s4_inst [15:12];
// plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[1].raminfr_inst/br[0].ramb16_s4_s4_inst [11:8];
// plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[0].raminfr_inst/br[1].ramb16_s4_s4_inst [7:4];
// plb_bram_if_cntlr_1_bram/bram_scrubber_bram_TR2/bram[0].raminfr_inst/br[0].ramb16_s4_s4_inst [3:0];
// END_BUS_BLOCK;
// END_ADDRESS_RANGE;
// END_ADDRESS_SPACE;

3. Rebuild the .bit file as in “Step 9. Create a New ISE Project and Import the Triplicated
Netlist (in EDIF Format) with the Other Dependant Files,” page 24 and reprogram the
FPGA. The design should function normally.

4. Press button (SW6) and verify the design is functioning.

If the block RAM scrubber is not working, pressing SW6 shuts down the system. In this case,
having bad data in domain 2 and disabling clock 1 results in bad data from the block RAMs
being voted, crashing the PPC. However, if the scrubber is running, the bad data in domain 2 is
corrected. Now when clock 1 is disabled, correct data from the block RAM domains (0 and 2) is
voted, and the PPC continues to function normally.

Improvements
Under
Consideration

There are some improvements under consideration by the Xilinx Radiation Test Consortium for
addition in future releases:

• Add the ability to compensate for block RAMs other than one data-bit wide without code
modifications (for example, as is done in the PLB version).

• Creating dual port RAM replacements, instead of just single port.

• Separate the A and B clocks for designs needing higher performance.

Conclusion Xilinx FPGAs are an ideal fit for space applications in harsh environments due to the flexibility,
size and reliability these robust devices provide, but like all devices containing memory
elements, they are susceptible to SEUs and SETs. By using a combination of TMR and
configuration scrubbing, designers can mitigate these errors.

This application note describes the process for building a mitigation scheme for an embedded
hard-core PPC405 system targeted to Virtex-4 FX device. This solution is based on continuous
external configuration scrubbing, functional surrounding logic triplication, and independent
internal block RAM scrubbing (also triplicated) to build a robust PPC405-based system.

http://www.xilinx.com

References

XAPP1004 (v1.0) March 14, 2008 www.xilinx.com 28

R

References 1. UG156, Xilinx TMRTool User Guide.

2. XAPP962, Single-Event Upset Mitigation for Xilinx FPGA Block Memories.

3. XAPP216, Correcting Single-Event Upsets through Virtex Partial Configuration.

4. XAPP779, Correcting Single-Event Upsets in Virtex-II/-II Pro Devices through Partial
Reconfiguration.

5. EDK user guides

6. UG210, ML405 Evaluation Platform User Guide.

7. UG018, PowerPC 405 Processor Block Reference Guide.

8. UG011, PowerPC Processor Reference Guide.

9. UG029, ChipScope Pro Software and Cores User Guide.

10. XAPP507, Running the Dhrystone 2.1 Benchmark on a Virtex-II Pro PowerPC Processor.

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

Date Version Revision

03/14/08 1.0 Initial Xilinx release.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug156.pdf
http://www.xilinx.com/support/documentation/user_guides/ug0210.pdf
http://www.xilinx.com/support/documentation/user_guides/ug011.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp962.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp216.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp779.pdf
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/support/documentation/user_guides/ug018.pdf
http://www.xilinx.com/ise/verification/chipscope_pro_sw_cores_8_1i_ug029.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp507.pdf

	Single-Event Upset Mitigation Design Flow for Xilinx FPGA PowerPC Systems
	Summary
	Tools needed to complete the example design flow
	Reference Design Location

	Introduction
	Example Processor System Overview
	Embedded PowerPC 405 description
	Example Test System Design

	Block RAM Correction Algorithm Overview for the PLB Bus
	Mitigation Process
	Recommended Design Flow Overview
	Design Flow Details and Step-by-Step Instructions
	Reference Files Included in the Test Design
	Design Flow Details
	Step 1. Create and Compile the Software for Execution on this Platform (EDK)
	Step 2. Modify and Synthesize the Top-Level File
	Step 3. Test and/or Simulate the Non-Mitigated Design in Hardware (ISE software/EDK plus Hardware)
	Step 4. Build the Block RAM Scrubber Replacement Macro (.ds File) and the Counter Netlist
	Step 5. Import the Hardware System Top-Level Netlist and the Synthesized Netlists (TMRTool)
	Step 6. Triplicate the Embedded System Using the Xilinx TMRTool and Produce a Triplicated Netlist (TMRTool)
	Step 7. Create a Triplicated Version of .ucf
	Step 8. Create a Triplicated Version of .bmm
	Step 9. Create a New ISE Project and Import the Triplicated Netlist (in EDIF Format) with the Other Dependant Files
	Step 10. Place and Route to Create a .bit file to Configure the FPGA

	Resource Evaluation
	Smoke Testing and Verification of the Mitigated PPC System
	Perform the Smoke Test

	Improvements Under Consideration
	Conclusion
	References
	Revision History
	Notice of Disclaimer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

